欢迎来到天天文库
浏览记录
ID:12416506
大小:317.00 KB
页数:7页
时间:2018-07-17
《蓄热式燃烧技术(插图)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、蓄热式燃烧技术一、前言随着经济全球化的不断推进,资源和环境问题日显突出.工业炉做为能源消耗的大户,如何尽快推行高效、环保的节能技术成为重中之重。蓄热式燃烧技术从根本上提高了加热炉的能源利用率,特别是对低热值燃料(如高炉煤气)的合理利用,既减少了污染物(高炉煤气)的排放,又节约了能源,成为满足当前资源和环境要求的先进技术。另外,蓄热式燃烧技术的采用又强化了加热炉内的炉气循环,均匀炉子的温度场,提高了加热质量,效果也非常显著.二、发展历史蓄热式燃烧方式是一种古老的形式,很早就在平炉和高炉上应用。而蓄热式烧
2、嘴则最早是由英国的HotWork与BritishGas公司合作,于上世纪八十年代初研制成功的。当初应用在小型玻璃熔窑上,被称为RCB型烧嘴,英文名称为RegenerativeCeramicBurner。由于它能够使烟气余热利用达到接近极限水平,节能效益巨大,因此在美国、英国等国家得以广泛推广应用。1984年英国的AvestaSheffild公司用于不锈钢退火炉加热段的一侧炉墙上,装了9对,其效果是产量由30t/h增加到45t/h,单耗为1.05GJ/t。虽然是单侧供热,带钢温度差仅为±5℃。1988年
3、英国的RotherhamEngineeringSteels公司在产量175t/h的大方坯步进梁式炉上装了32对RCB烧嘴,取代了原来的全部烧嘴,600℃热装时单耗0.7GJ/t,炉内温度差±5℃。日本从1985年开始了蓄热燃烧技术的研究。他们没有以陶瓷小球作蓄热体,而是采用了压力损失小、比表面积比小球大4—5倍的陶瓷蜂窝体,减少了蓄热体的体积和重量。1993年,日本东京煤气公司在引进此项技术后作了改进,将蓄热器和烧嘴组成一体并采用两阶段燃烧以降低NOx值,其生产的蓄热式烧嘴称FDI型。开始用于步进梁式
4、炉,锻造炉,罩式炉以及钢包烘烤器等工业炉上。日本NKK公司于1996年在230t/h热轧板坯加热炉(福山厂)上全面采用了蓄热式燃烧技术,使用的是以高效蜂窝状陶瓷体作蓄热体的热回收装置和喷出装置一体化的紧凑型蓄热式烧嘴,烧嘴每30s切换一次。投产后,炉内氧浓度降低、NOx大幅度减少,炉内温度均匀,效率提高。在中国,早期的蓄热式燃烧技术应用于钢铁冶金行业中的炼钢平炉和初轧均热炉上。然而,由于当时所采用的蓄热体单位比表面积小,蓄热室结构庞大,换向阀安全性能差、造价高,高温火焰温度集中,技术复杂等诸多原因,导
5、致了其难以在其他加热炉和热处理炉上使用。80年代后期,我国开始了陶瓷小球蓄热体蓄热式燃烧技术的研究和应用。当时,结合我国广泛使用低热值燃料,特别是大量高炉煤气被放散的实际情况,我国的热工研究者开发出了适合我国国情的独具特色的蓄热式高温燃烧技术软硬件系统,并逐步应用于均热炉、车底式退火炉、加热炉等各种工业炉窑上。三、基本原理及特点1、蓄热式燃烧装置的原理1.1动漫效果1.2蓄热式燃烧装置原理见下图1.(a)(b)(c)图1.(a)单蓄热式烧嘴加热系统(外置式)图1.(b)单蓄热式烧嘴加热系统(内置或半内
6、置式)图1.(c)空、煤气双蓄热上下(左右)烧嘴加热系统当燃烧装置1处于燃烧状态时,被加热介质(助燃空气、煤气)通过换向阀进入蓄热室,高温蓄热体把介质预热到比炉温低100~150℃的高温,通过空煤气烧嘴(或火道)进入炉内,进行弥散混合燃烧。而另一个配对的燃烧装置2则处于蓄热状态,高温烟气流入蓄热室,将蓄热体加热,烟气温度降到250~150℃后流过换向阀经排烟机排出。煤气、空气预热各设置一台排烟机,只预热空气设置一台排烟机。蓄热式燃烧装置系统主要由燃烧装置、蓄热室(内有蓄热体)、换向系统、排烟系统和连接
7、管道,五大部份组成。无论哪种形式的燃烧装置,蓄热室(内有蓄热体)必须成对布置。经过一定时间后,换向阀换向如此反复交替工作,使被加热介质加热到较高温度,进入炉膛,实现对炉内物料的加热。1、蓄热式燃烧装置的特点初期采用蓄热式烧嘴的主要目的是为了进一步提高空气的预热温度,更大程度地回收烟气带走的热量,以节约能源。但由于高温燃烧带来了高的NOX排放,因此限制了它在工业发达国家的推广使用。近入90年代后,低NOX的蓄热烧嘴开始进一步研究,1992年开发成功,被称为高温空气燃烧技术。这种技术的原理是降低燃烧空间中
8、的氧浓度,创造贫氧条件,消除局部炽热高温区,用高速喷出的空气射流卷吸周围烟气形成贫氧燃烧区,此时形成的火焰体积大大增加,亮度减弱,温度均匀,梯度很小,这就有效地减少了NOX的产生。新开发的蓄热式烧嘴采用分段燃料供应法降低NOX。即一次燃料流量为5%,二次燃料为95%,并使助燃空气以100m/s的速度喷出,高速空气的射流卷吸周围炉气回流,使燃烧过程减缓,火焰燃烧区氧浓度低,形成的火焰体积大大增加,亮度减弱,温度均匀,梯度很小,在炉温1300℃时产生的NOX
此文档下载收益归作者所有