氮化镓半导体材料

氮化镓半导体材料

ID:12386589

大小:60.50 KB

页数:4页

时间:2018-07-16

氮化镓半导体材料_第1页
氮化镓半导体材料_第2页
氮化镓半导体材料_第3页
氮化镓半导体材料_第4页
资源描述:

《氮化镓半导体材料》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、氮化镓半导体研究一.物理背景自20世纪60年代,发光二极管(LightEmittingDiode,LED)的发展非常迅速,它具有体积小、耐冲击、寿命长、可靠度高与低电压低电流操作等优良的特性,适用于在各种环境的使用,而且符合未来环保节能的社会发展趋势。初期的以砷化镓(GaAs)、铝铟磷镓(AIGalnP)材料为基础之发光二极管,实现了红光至黄绿光波段的电激发光。近年来,以氮化镓(GaN)为代表的新一代半导体材料技术上氮化镓半导体材料具有禁带宽度大、击穿电场高、电子饱和漂移速度高、介电常数小、抗辐射能力强和良好的化学稳定性等独

2、特的特性,在光显示、光存储、光探测等光电子器件和高温、高频大功率电子等微电子器件领域有广阔的应用前景,其中最引人瞩目的是作为发光材料的应用,由于氮化镓能与氮化铟(INN)和氮化铝(AIN)形成三元或四元化合物,如此借着改变IlI族元素的比例,便能使发光波长涵盖红外光到紫外光的范围,另外将发蓝光的氮化镓基发光二极管配以可激发出黄绿光的荧光粉,从而混合发出白光,应用前景非常广泛,除了应用于指示灯、灯饰、手电筒等普通市场,氮化镓基发光二极管还应用于手机及手提电脑背光源、交通灯、户外全彩显示屏等市场,但氮化镓基发光二极管最有前景的应

3、用还是在普通照明市场。二.GaN的应用高效节能、长寿命的半导体照明产品正在引领照明业的绿色变革。随着第三代半导体材料氮化镓的突破和蓝、绿发光二极管的问世,世界各国纷纷投入巨资推出国家级半导体照明计划。GaN属宽禁带半导体,直接带隙3.4eV,在长寿命、低能耗、短长半导体发光二极管(LED)、激光二极管(LD)、紫外探测器以及高温微电子器件等方面有广阔的应用前景,GaN器件的广泛应用将预示着光电信息乃至光子信息时代的来临,因此,以GaN为代表的第三代半导体材料被誉为信息产业新的发动机。GaN基半导体材料,包括GaN、A1N和I

4、nN,都是直隙半导体材料,因而有很高的量子效率。用GaN、A1N和InN这三种材料按不同组份生成的固溶体,其禁带宽度可在O.7eV到6.2eV之间变化。这样,用这些固溶体制造发光器件,是光电集成材料和器件发展的方向,其主要应用领域包括:(1)当前在国内外非常受人瞩目的半导体照明是一种新型的高效、节能和环保光源,将取代目前使用的大部分传统光源,被称为21世纪照明光源的革命,而GaN基高效率、高亮度发光二极管(LED)的研制是实现半导体照明的核心技术和基础。以LED为代表的半导体光源,具有节能、长寿命、免维护、环保等优点,目前己

5、被广泛的应用于大屏幕平板显示和交通信号灯以及显示指示灯,并逐渐向通用照明领域发展,目前实验室水平的白光LED发光强度已经达到131lm/w。(2)CD、DVD的光存储密度与作为读写器件的半导体激光器的波长的平方成反比,目前流行的CD、DVD的激光读写头分别采用波长为780nm、650nm的AIGaAs/AIGalnP材料,存储容量分别为700MB,4.7GB。若用波长为410rim的InGaN/GaN蓝光激光器代替,光盘的存储容量将高达27GB,将会成为光存储和处理的主流技术。(3)适合制作紫外探测器件。当在强可见光和红外辐

6、射背景中探测紫外信号时,要尽量避免或减少紫外信号以外的背景信号干扰。以GaN做成的紫外探测器,克服了Si探测器在紫外波段探测效率低、需要复杂的滤光系统等弱点。而氮化物特别是AIGaN,可以制成日光盲紫外探测器,其截止波长为200.356nm。在这个范围的探测器可以用于火焰探测、燃烧诊断、光谱学和紫外监视,AIGaN探测器还有重要的军事用途,可用于导弹制导和导弹预警防御系统。(4)由于GaN基材料有禁带宽度大、击穿电压高、电子饱和速率高、热稳定性好、抗腐蚀性强等优点,被广泛用于制作高电子迁移率晶体管、双极晶体管、场效应晶体管等

7、微电子器件,适合在高温、大功率及恶劣环境下工作⋯11。高温、高频、高功率微波器件是无线通信、国防等领域急需的电子器件,如果目前使用的微波功率管的输出功率密度提高一个数量级,微波器件的工作温度提高到300℃,将解决航天航空用电子装备和民用移动通信系统的一系列难题。三.GaN的制备方法3.1由于GaN体单晶非常难以获得,即便是已有一些研究报道对GaN体单晶生长取得了一定进展,但它们的质量还无法达到作衬底的要求。因此现今对GaN的研究都集中在以异质材料(如A1203、SiC、Si等)为衬底的外延生长薄膜上。随着异质外延技术的进步,

8、现在已经可以在特定的衬底材料上外延生长获得质量优良的GaN外延层,这也使得GaN材料体系的应用得到了迅速发展,异质外延技术成为了制备GaN薄膜的主要方法。3.1生长工艺GaN的外延生长一般有以下几种工艺:金属有机化学气相沉积(MetalOrganicChemicalVaporDeposit

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。