欢迎来到天天文库
浏览记录
ID:1235716
大小:556.00 KB
页数:10页
时间:2017-11-09
《因子分析方法——多变量分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、因子分析方法——多变量分析因子分析(FactorAnalysis)是一种非常有用的多变量分析技术。我想说,你要想学好多变量分析技术,一是:理解多元回归分析,二是:理解因子分析;这是多变量分析技术的两个出发点。为什么这么说呢?多元回归分析是掌握有因变量影响关系的重点,无论什么分析,只要研究的变量有Y,也就是因变量,一般都是回归思想,无非就是Y的测量尺度不同,选择不同的变形方法。而因子分析则是研究没有因变量和自变量之分的一组变量X1X2X3...Xn之间的关系。 在市场研究中,我们经常要测量消费者的
2、消费行为、态度、信仰和价值观,当然最重要的是测量消费者的消费行为和态度!我们往往采用一组态度量表进行测量,用1-5打分或1-9打分,经常提到的李克特量表。 上面的数据是我们为了测量消费者的生活方式或者价值观什么的,选择了24个语句,让消费者进行评估,同意还是不同意,像我还是不像,赞成还是不赞成等等,用1-9打分; 因子分析有探索性因子分析和证实性因子分析之分,这里我们主要讨论探索性因子分析!证实性因子分析主要采用SEM结构方程式来解决。从探索性因子分析角度看:·一种非常实用的多元统计分析方法
3、;·一种探索性变量分析技术;·分析多变量相互依赖关系的方法;·数据和变量的消减技术;·其它细分技术的预处理过程;我们为什么要用因子分析呢? 首先,24个可测量的观测变量之间的存在相互依赖关系,并且我们确信某些观测变量指示了潜在的结构-因子,也就是存在潜在的因子;而潜在的因子是不可观测的,例如:真实的满意度水平,购买的倾向性、收获、态度、经济地位、忠诚度、促销、广告效果、品牌形象等,所以,我们必须从多个角度或维度去测量,比如多维度测量购买产品的动机、消费习惯、生活态度和方式等; 这样,一组量表
4、,有太多的变量,我们希望能够消减变量,用一个新的、更小的由原始变量集组合成的新变量集作进一步分析。这就是因子分析的本质,所以在SPSS软件中,因子分析方法归类在消减变量菜单下。新的变量集能够更好的说明问题,利于简化和解释问题。 当然,因子分析也往往是预处理技术,例如,在市场研究中我们要进行市场细分研究,往往采用一组量表测量消费者,首先,通过因子分析得到消减变量后的正交的因子(概念),然后利用因子进行聚类分析,而不再用原来的测量变量了!我想这是市场研究中因子分析的主要应用! 其实,你可以想象,
5、例如在多元回归分析中,如果多个自变量存在相关性,如果可以用因子分析,得到几个不相关的变量(因子),再进行回归,就解决了自变量共线性问题。(理论上是这样的,但市场研究很少这么操作!)下面是要理解的因子分析的基本概念:·一种简化数据的技术。·探索性因子分析和证实性因子分析·因子分析就是要找到具有本质意义的少量因子。·用一定的结构/模型,去表达或解释大量可观测的变量。·用相对少量的几个因子解释原来许多相互关联的变量之间的关系。·描述的变量是可观测的——显在变量。·相关性较高,联系比较紧密的变量放在一类。·
6、每一类变量隐含一个因子——潜在变量。·不同类的变量之间相关性较弱。·各个因子之间不相关。下面我们通过PASWStatistics软件来进行操作! 在进行因子分析前,大家务必明确你的数据集中24个变量是否存在缺失值问题!默认情况下系统采用Lisewase,也即是只要24个变量有一个缺失,该记录删除,也就是说如果你的样本存在大量缺失,可能造成因子分析的样本量大量收缩!我们将24个变量选择后,选择描述对话框,可以选择KMO和Bartlett的球形度检验!这个指标主要从统计角度给出24个变量是否存在内在
7、结构,也就是潜在因子结构,说白了,就是不适合因子分析!极端可能就是所有24个变量都测量的是一个维度的因子概念,另一个极端就是24个变量全部是正交不相关的,根本不存在因子,不适合因子分析!接下来我们要选择抽取因子的方法:在方法上,我们如果不是非常理解或有特殊要求,就选择主成份方法;这也是为什么在SPSS软件中没有独立的主成份分析,其实是包容在因子分析中了!记住一点:如果24个变量存在因子结构,用什么方法得当的结果基本相同!况且,市场研究采用量表24个变量的测量尺度都是一致的!如果你没有特殊要求,默然选
8、择抽取特征值大于1的因子!选择碎石图——也是表达因子选择的图示方式!因为是研究结构,所以从相关矩阵出发,实际上就是标准化后的方差矩阵,没有了量纲!接下来,我们选择因子旋转方法! 因子旋转是因子分析的核心技巧,也是我们期望得到的结果。旋转的概念就是坐标变换,不过旋转有正交和斜交旋转差别罢了!从解释因子结构的角度正交旋转是最容易解释的,得到的因子也是不相关的;斜交则得到的因子具有相关性,但更符合或能捕捉数据的维度!所以,有一种说法,如果是接下来要进行市场细分,最好采用
此文档下载收益归作者所有