高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件

高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件

ID:1232586

大小:262.50 KB

页数:15页

时间:2017-11-09

高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件_第1页
高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件_第2页
高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件_第3页
高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件_第4页
高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件_第5页
资源描述:

《高中数学必修3 1.3.2算法案例(秦九韶算法)(z)课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、案例2秦九韶算法一、三维目标(a)知识与技能了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。(b)过程与方法模仿秦九韶计算方法,体会古人计算构思的巧妙.(c)情感态度与价值观通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。二、教学重难点重点:1.秦九韶算法的特点;难点:2.秦九韶算法的先进性理解.1、辗转相除法(欧几里得算法)(1)算理:所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法

2、,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数。2、更相减损术(1)算理:所谓更相减损术,就是对于给定的两个数,先判断是否是偶数,若是,用2约简,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,再用较大的数减去较小的数,反复执行此步骤直到差数和较小的数相等,此时相等的两数,则这个数与约简的数便为原来两个数的最大公约数。练习:利用辗转相除法求两数4081与20723的最大公约数.(53)20723=4081×5+318;4081=318×12+265;318=265×1+53;265=53×5+0.秦九韶(

3、约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。计算多项式f(x)=x5+x4+x3+x2+x+1当x=5的值算法1:因为f(x)

4、=x5+x4+x3+x2+x+1所以f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1分析:两种算法中各用了几次乘法运算?和几次加法运算?算法1:所以f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906算法2:f(5)=5

5、5+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1共做了1+2+3+4=10次乘法运算,5次加法运算。共做了4次乘法运算,5次加法运算。因为f(x)=x5+x4+x3+x2+x+1[问题]求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值能否探索更好的算法,来解决任意多项式的求值问题?f(x)=2x5-5x4-4x3+3x2-6x+7=(2x4-

6、5x3-4x2+3x-6)x+7=((2x3-5x2-4x+3)x-6)x+7=(((2x2-5x-4)x+3)x-6)x+7=((((2x-5)x-4)x+3)x-6)x+7v0=2v1=v0x-5=2×5-5=5v2=v1x-4=5×5-4=21v3=v2x+3=21×5+3=108v4=v3x-6=108×5-6=534v5=v4x+7=534×5+7=2677所以,当x=5时,多项式的值是2677.这种求多项式值的方法就叫秦九韶算法.[问题]求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值例1:用秦

7、九韶算法求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.解法一:首先将原多项式改写成如下形式:f(x)=((((2x-5)x-4)x+3)x-6)x+7v0=2v1=v0x-5=2×5-5=5v2=v1x-4=5×5-4=21v3=v2x+3=21×5+3=108v4=v3x-6=108×5-6=534v5=v4x+7=534×5+7=2677所以,当x=5时,多项式的值是2677.然后由内向外逐层计算一次多项式的值,即2-5-43-67x=5105252110510854053426702677所以,当

8、x=5时,多项式的值是2677.原多项式的系数多项式的值.例1:用秦九韶算法求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值.解法二:列表22-50-43-60x=5105252512512160560830403034所以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。