欢迎来到天天文库
浏览记录
ID:12145566
大小:34.00 KB
页数:4页
时间:2018-07-15
《历年考研数学真题高等数学部分考查重点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、无需积分,无需回复,只要你带宽足够大,你资料就足够多!大家网考研论坛http://club.topsage.com/forum-28-1.html真正的全免费公益性考研论坛,等待您的光临!声明:本资料由大家论坛考研论坛http://club.topsage.com/forum-28-1.html收集整理,转载请注明出自http://club.topsage.com无需积分,无需回复,只要你带宽足够大,你资料就足够多!大家网考研论坛http://club.topsage.com/forum-28-1.html真正的全
2、免费公益性考研论坛,等待您的光临!声明:本资料由大家论坛考研论坛http://club.topsage.com/forum-28-1.html收集整理,转载请注明出自http://club.topsage.com历年考研数学真题高等数学部分考查重点一、函数、极限与连续 1.求分段函数的复合函数; 2.求极限或已知极限确定原式中的常数; 3.讨论函数的连续性,判断间断点的类型; 4.无穷小阶的比较; 5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 二、一元函数微分学 1.求给定
3、函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 2.利用洛比达法则求不定式极限; 3.讨论函数极值,方程的根,证明函数不等式; 4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数; 5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;无需积分,无需回复,只要你带宽足够大,你资料就足够多!
4、大家网考研论坛http://club.topsage.com/forum-28-1.html真正的全免费公益性考研论坛,等待您的光临!声明:本资料由大家论坛考研论坛http://club.topsage.com/forum-28-1.html收集整理,转载请注明出自http://club.topsage.com 6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。 三、一元函数积分学 1.计算题:计算不定积分、定积分及广义积分; 2.关于变上限积分的题:如求导、求极限等; 3.有关积分中值定理和积分性质
5、的证明题; 4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 5.综合性试题。 四、向量代数和空间解析几何 1.计算题:求向量的数量积,向量积及混合积; 2.求直线方程,平面方程; 3.判定平面与直线间平行、垂直的关系,求夹角; 4.建立旋转面的方程; 5.与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 1.判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;无需积分,无需回复,只要你带宽足够大,你资
6、料就足够多!大家网考研论坛http://club.topsage.com/forum-28-1.html真正的全免费公益性考研论坛,等待您的光临!声明:本资料由大家论坛考研论坛http://club.topsage.com/forum-28-1.html收集整理,转载请注明出自http://club.topsage.com 2.求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 3.求二元、三元函数的方向导数和梯度; 4.求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是
7、多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 5.多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 1.二重、三重积分在各种坐标下的计算,累次积分交换次序; 2.第一型曲线积分、曲面积分计算; 3.第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 4.第二型(对坐标)曲面积分的计算,高斯公式及其应用; 5.梯度、散度、
8、旋度的综合计算; 6.重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 1.判定数项级数的收敛、发散、绝对收敛、条件收敛;无需积分,无需回复,只要你带宽足够大,你资料就足够多!大家网考研论坛http://club.topsage.com/forum-28-1.html真正的全
此文档下载收益归作者所有