资源描述:
《全固态高输出功率单频nd∶》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第34卷第6期中国激光Vol.34,No.62007年6月CHINESEJOURNALOFLASERSJune,2007文章编号:025827025(2007)0620739204全固态高输出功率单频Nd∶YVO4/KTP激光器郑耀辉,卢华东,李凤琴,张宽收,彭堃墀(山西大学光电研究所量子光学与光量子器件国家重点实验室,山西太原030006)摘要利用光纤耦合输出的半导体激光器(LD)端面抽运Nd∶YVO4晶体,激光谐振腔采用四镜环形腔结构,通过KTP晶体内腔倍频,获得了高功率全固态连续单频绿光激光输出。根据临界相位匹配下椭圆高斯光束的倍频理论,通过旋转Nd∶
2、YVO4晶体的方向选取合适的基频光偏振方向,使KTP晶体的走离角所在平面与谐振腔弧矢面平行,可提高内腔倍频转换效率。当抽运功率为20W时,激光器最大单频绿光输出功率达4.8W。作为对比,控制基频光偏振方向使KTP晶体的走离角所在平面与谐振腔子午面平行时,激光器最大单频绿光输出功率为4.1W。对比两种情形下的实验结果,激光器的光2光转换效率从21.8%提高到25.5%。关键词激光技术;高效单频激光器;Nd∶YVO4/KTP;内腔倍频;椭圆高斯光束中图分类号TN248.1文献标识码AAll2Solid2StateHigh2EfficiencyHigh2Power
3、Nd∶YVO4/KTPLaserofSingle2FrequencyOperationZHENGYao2hui,LUHua2dong,LIFeng2qin,ZHANGKuan2shou,PENGKun2chi(StateKeyLaboratoryofQuantumOpticsandQuantumOpticsDevices,InstituteofOptoelectronics,ShanxiUniversity,Taiyuan,Shanxi030006,China)AbstractAnall2solid2statesinglefrequencyNd∶YVO4/K
4、TPlaserwithhighefficiencyandhighpowerisreported,withfiber2coupledlaserdiode(LD)end2pumpingNd∶YVO4crystal,ringresonatorconsistingoffourmirrors,andKTPcrystalintracavityfrequencydoubling.Basedonthefrequency2doublingtheoryofellipticalGaussianbeamunderconditionsofcriticalphasemathcing,a
5、nimprovedintracavityfrequency2doublingconversionefficiencyisobtainedbytuningtheorientationofNd∶YVO4crystalandchoosingappropriatepolarizingdirectionforfundermentalfrequencylighttomakethewalk2offplaneofKTPcrystalparalletothesagittalplaneofcavity.Thepeakoutputpowerofsinglefrequencygre
6、enlaserreachesto4.8Wandtheoptical2opticalconversionefficiencyequalsto25.5%,whenthepumpingpoweris20W.Incomparison,whenthewalk2offplaneisperpendiculartothesagittalplane,theconversionefficiencyis21.8%,andthemaximalsinglefrequencygreenlaseroutputpoweris4.1W.Keywordslasertechnique;high2
7、efficiencysingle2frequencylaser;Nd∶YVO4/KTP;intracavityfrequencydoubling;ellipticalGaussianbeam1引言应用,实现单频运转的全固态绿光激光器越来越受到大家的关注。现已有多种方法能使该器件达到单激光二极管(LD)抽运的全固态绿光激光器有[5][6]纵模运转,例如用扭转模腔、短腔谐振、标准具广泛的应用领域,该方面的研究也有了很大进[7][8]选模及双折射滤光片选模等。但在设计高功率[1~3]展。随着技术的发展,由于其在光谱、相干通输出内腔倍频激光器时,大多仍是利用环形谐振
8、腔,[4]信、参量振荡及量子光学实验研究等领域的广泛