2010高考整套真题及答案

2010高考整套真题及答案

ID:12042898

大小:3.81 MB

页数:32页

时间:2018-07-15

2010高考整套真题及答案_第1页
2010高考整套真题及答案_第2页
2010高考整套真题及答案_第3页
2010高考整套真题及答案_第4页
2010高考整套真题及答案_第5页
资源描述:

《2010高考整套真题及答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、(2)B【解析】由得,所以由复数相等的意义知,所以1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。(3)D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。(4)【答案】D(7)A【解析】由题意得:所求封闭图形的面积为,故选A。【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。可知当直线平移到点(5,3)时,目标函数取得最大值3;当直线平移到点(3,5)时,目

2、标函数取得最小值-11,故选A。【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数的几何意义是解答好本题的关键。(11)函数y=2x-的图像大致是A【解析】因为当x=2或4时,2x-=0,所以排除B、C;当x=-2时,2x-=,排除D,所以选A。【命题意图】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力。12B【解析】若与共线,则有,故A正确;因为,而,所以有,故选项B错误,故选B。【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识

3、以及分析问题、解决问题的能力。二【答案】【解析】当x=10时,y=,此时

4、y-x

5、=6;当x=4时,y=,此时

6、y-x

7、=3;当x=1时,y=,此时

8、y-x

9、=;当x=时,y=,此时

10、y-x

11、=,故输出y的值为。【命题意图】本题考查程序框图的基础知识,考查了同学们的试图能力。【答案】【解析】由题意,设所求的直线方程为,设圆心坐标为,则由题意知:,解得或-1,又因为圆心在x轴的正半轴上,所以,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有,即,故所求的直线方程为。【命题意图】本题考查了直线的方程、点

12、到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。(18)【解析】(Ⅰ)设等差数列的公差为d,因为,,所以有,解得,所以;==。(Ⅱ)由(Ⅰ)知,所以bn===,所以==,即数列的前n项和=。【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。(19)【解析】(Ⅰ)证明:因为ABC=45°,AB=2,BC=4,所以在中,由余弦定理得:,解得,所以,即,又PA⊥平面ABCDE,所以PA⊥,又PA,所以,又AB∥CD,所以,又因为,所以

13、平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作于H,则,又AB∥CD,AB平面内,所以AB平行于平面,所以点A到平面的距离等于点B到平面的距离,过点B作BO⊥平面于点O,则为所求角,且,又容易求得,所以,即=,所以直线PB与平面PCD所成角的大小为;(Ⅲ)由(Ⅰ)知,所以,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE的面积为,所以四棱锥P—ACDE的体积为=。=,所以的分布列为234数学期望=++4=。【命题意图】本题考查了相互独立

14、事件同时发生的概率、考查了离散型随机变量的分布列以及数学期望的知识,考查了同学们利用所学知识解决实际问题的能力。(21)【解析】(Ⅰ)由题意知,椭圆离心率为,得,又,所以可解得,,所以,所以椭圆的标准方程为;所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为。【命题意图】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创

15、造性地分析问题、解决问题的能力,22(Ⅱ)当时,在(0,1)上是减函数,在(1,2)上是增函数,所以对任意,有,又已知存在,使,所以,,即存在,使,即,即,所以,解得,即实数取值范围是。【命题意图】本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。(1)直接利用函数与导数的关系讨论函数的单调性;(2)利用导数求出的最小值、利用二次函数知识或

16、分离常数法求出在闭区间[1,2]上的最大值,然后解不等式求参数。2010年普通高等学校招生全国统一考试(山东卷)理科综合物理17.AC【解析】整体法,分析受力,选AC.本题考查受力分析,力的平衡。难度:易。18.20.BD【解析】A.根据电场线疏密表示电场强度大小,点场强小于点场强,A错误;B.根据沿电场线方向电势降低(最快),点电势高于点电势,B正确;C.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。