晶振频率测量系统建模及数据研究

晶振频率测量系统建模及数据研究

ID:12008369

大小:27.00 KB

页数:6页

时间:2018-07-15

晶振频率测量系统建模及数据研究_第1页
晶振频率测量系统建模及数据研究_第2页
晶振频率测量系统建模及数据研究_第3页
晶振频率测量系统建模及数据研究_第4页
晶振频率测量系统建模及数据研究_第5页
资源描述:

《晶振频率测量系统建模及数据研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、晶振频率测量系统建模及数据研究【摘要】受器件老化、随机噪声等因素影响,晶振频率变化较复杂。以GPS秒脉冲作为测量标准,构建了晶振频率随时间变化的测量系统,通过对测量数据进行一元回归统计处理,分离出了晶振实际频率与其标称频率的相对偏差及晶振的各种随机误差,并分析了这两种误差对晶振准确度及稳定度的影响。该方法可为频率源误差测量分析提供借鉴作用。【关键词】GPS;晶振;频率;误差;回归分析中图分类号:O572.21+3文献标识码:A文章编号:1、晶振频率测量系统组成测量系统由GPS接收机、晶振、时差测量模块、时钟产生模块、计算机数据采集处理组

2、成。组成原理如图1所示。GPS接收机每秒输出1路TTL电平的标准秒脉冲(1PPS),晶振是时差测量和时钟产生的频率源。时钟产生电路产生本地秒脉冲。时差测量电路测量GPS秒脉冲与本地秒脉冲的相位差值。2、模型建立实验以GPS秒脉冲作为标准参考信号,采用比时法对晶振的输出频率进行测量。按照建立的测量系统,实际对某一晶振采集到30个计数值,如表1所示。6表1中x表示测量的时间(单位:s);y表示晶振脉冲计数个数。假设晶振在某秒计数值为M,它的计数周期为T,则MT为晶振秒脉冲与GPS秒脉冲的时间差值。为了研究时间x与计数个数y之间的关系,用OR

3、IGIN工具软件对数据进行拟合处理,得到的x,y关系曲线如图2所示。从散点图可以看出,测量计数值和测量时间大致呈线性关系。据此假设这两个变量之间的内在关系是一条直线,这些点与直线的偏离是由于测量过程中其他一些随机因素的影响而引起的,这样可以假设这组测量数据有如下结构形式:式中:分别表示其他随机因素对变量y1,y2,…,,yN影响的总和,一般假设它们是一组相互独立,并服从同一正态分布N(0,)的随机变量。变量x在实验中为自然数,表示具体的秒脉冲数值。这样,变量y表示实际所测得的晶振与标准频率的计数差值,它是服从的随机变量。用最小二乘法来估

4、计参数。设b0,b分别是参数的最小二乘估计,于是得到一元线性回归的回归方程:式中:b0,b是回归方程的回归系数,分别表示晶振相对于标准频率的初始误差和累积误差。应用最小二乘法可求得回归系数b,b0为:63、数据分析与处理3.1回归系数估计为了定量分析数据,从而确定晶振频率误差的组成,首先对上述测得的数据进行归一化处理。实际测量中得到的是晶振脉冲的计数个数,设测量系统所用晶振频率为10MHz,可将计数数据转化为晶振相对于标准时间每秒的时间之差。用Matlab对归一化数据进行处理,依照最小二乘原理,得到计数时间x与时间差值y的均值,以及x的

5、自相关、x和y的互相关、y的自相关及回归方程如表2所示。从表2得到回归方程为:从回归方程可以看出,给定一个时间x值,就可得到相对应的时间差值。例如,表示在第15s时晶振相对于标准时间的误差为t=从回归方程可预测此晶振在24h相对于标准时间的时间误差值为:以上求得了回归方程,但是该方程是否基本上符合y与x之间的客观规律,是否符合晶振频率误差变化的实际特点,还需要对回归方程做进一步的分析。在回归分析法中,通常采用方差分析法对回归方程的显著性进行检验,其实质是将N个测量值的影响从数量上区分开,然后用F检验法对所求回归方程进行显著性检验。63.

6、2晶振频率误差数据方差分析及显著性检验测量值y1,y2,…,,yN之间的差异(称为变差)是由两方面的原因引起的。一是自变量取值的不同,二是其他因素(包括试验误差、随机误差等)的影响。为了对回归方程进行检验,把两者所引起的变差从y的总变差中分解出来。根据上述数据可得:式中:U称为回归平方和,它反映了在y的总变差中由于x和y的线性关系而引起的y变化的部分;Q称为残余平方和,即所有测量点距回归直线的残余误差平方和。若总的平方和由N项组成,其自由度就为N-1,总的离差平方和的自由度可分为回归平方和的自由度vU和残余平方和的自由度vQ之和,即:v

7、S=vU+vQ(6)在一元线性回归中,vU=1,vS=N-1,则Q的自由度vQ=N-2。由回归平方和与残余平方和的意义可知,一个回归方程是否显著,也就是y与x的线性关系是否密切,取决于U及Q的大小,U愈大Q愈小,说明y与x的线性关系愈密切。通常可以采用F检验法来对方程进行显著性检验。对于一元线性回归,将U及Q的值代入上式得到统计量F:由F分布表可以查出,可认为回归是高度显著的。残余平方和Q除以它的自由度vQ所得商:6称为残余方差,它可以看作排除了x对y的线性影响后,衡量y随机波动大小的一个估计量。残余方差的平方根:称为残余标准差,它可用

8、来衡量所有随机因素对y一次性测量平均变差的大小,愈小,则回归直线的精度愈高。把平方和及自由度进行分解的方差分析数据结果归纳在一个表格中,如表3所示。从表3可以看出,在30s时间内,晶振实际频率与其标称频率的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。