资源描述:
《低碳钢和铸铁的扭转破坏实验机械技术基础实验中心》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、低碳钢和铸铁的扭转破坏实验机械技术基础实验中心机械工程基础实验之低碳钢和铸铁的扭转破坏实验实验目的观察并比较低碳钢及铸铁材料扭转破坏的情况测定低碳钢的抗剪屈服强度及抗剪强度测定铸铁的抗剪强度比较低碳钢与铸铁的抗扭性能实验设备K-50,NJ-100B型扭转试验机游标卡尺实验内容对低碳钢进行扭转破坏,观察低碳钢扭转的现象,分析断裂的原因对铸铁进行扭转破坏,观察铸铁扭转的现象,分析断裂的原因实验原理圆轴受扭矩时,材料完全处于纯切应力状态,所以通常用扭转实验来研究不同材料在纯切作用下的力学性能.图1.9低碳钢转角扭矩曲
2、线低碳钢试样的扭转低碳钢试样受到扭转的整个过程中,扭转试验机上的自动绘图器记录出的关系曲线,如图1.9所示.当扭矩在比例扭矩以内,材料完全处于弹性状态,OA段为一直线,所以与成正比关系变化,试样横截面上的剪应力分布如图1.10(a)所示.当扭矩增大到时试样横截面周边上的切应力(最大切应力)为材料的比例强度,如图1.10(b)所示.当扭矩超过后,试样横截面上的切应力分布发生了变化,首先是在截面周边处的材料发生了屈服(即流动),周边形成环形塑性区,此区内的切应力达到抗剪屈服强度,切应力分布图如图1.10(c)所示.
3、随着扭矩继续增大,塑性区不断向内扩展,塑性区的切应力达到后就不再增大,如图1.10(c)所示,曲线稍微上升,到B点后至点趋于水平,即材料完全达到屈服,扭矩不再增加,这时扭矩表盘(即测力表盘)上的指针出现暂时停顿,B点对应的扭矩即为屈服扭矩,此时塑性区已扩展到整个截面,横截面上的切应力分布如图1.10(d),即当达到时,横截面上各点的剪应力大小均相同,且都为,所以由图1.10(e)得:式中:图1.10试样剪应力分布过了屈服阶段以后,由于材料的强化,又恢复了承载能力,但扭矩增加很小,而变形(扭转角)增长很快,段近似
4、一根直线,到达C点时,试样被切断,此时扭矩表盘上的从动指针指示材料破坏时的最大扭矩,横截面上各点的切应力仍大小均相同,且都为,其分布与图1.10(d)相似,所以.铸铁试样的扭转铸铁试样从开始受扭转直到被破坏,其关系曲线近似为一条直线,如图1.11(a)所示.从图中可看出铸铁试样受扭转过程中变形(扭转角)较小,且无屈服现象.试样破坏后记录其最大扭矩,横截面上的切应力分布如图1.11(b)所示,所以材料的抗剪强度应按下式计算:图1.11铸铁转角扭矩及应力分布曲线低碳钢,铸铁扭转破坏断面形状及形成原因由理论分析可知,
5、被扭转的圆轴材料处于平面应力状态,沿纵,横截面上产生切应力,而与轴线成45度角的斜截面上则只产生正应力.低碳钢的抗拉能力比抗剪能力强,故从横截面切断,如图1.12(a)所示.而铸铁的抗拉能力较抗剪能力弱,故沿45度的方向拉断,如图1.12(b)所示.(a)低碳钢(b)铸铁图1.12低碳钢,铸铁扭转破坏断面形状实验步骤沿试样轴向等间距测量三处的直径d,每处相隔90度各测一次并求平均值,以最小平均直径作为计算直径.选择测力表盘刻度(选择量程),并挂上相应的摆锤,将指针对准"零"点.试样一端的头部完全置于固定夹头中并
6、夹紧,然后调整活动夹头的位置,使试样另一端的头部完全置于其中并夹紧.注意,扭转过程中试样不能发生打滑.缓慢加载到700N,切忌不要超过800N在试样的表面上用有色笔画一轴向直线,以便观察变形及破坏情况.将绘图纸安置在自动绘图器的圆筒上,并将扭转角指示器调整到0圈及0度.退出滑动轴承测试软件,卸掉轴承上施加的外载荷,关闭实验台电源为了便于观察和记录数据,建议:加载之前一定要将扳紧手柄取下,以免扳紧手柄甩出发生人伤事故.对低碳钢试样,加载时要缓慢,连续,均匀,不得停顿.当测力表盘上的指针出现停顿时,记录屈服扭矩,直
7、到试样剪断,立即停车,记录最大扭矩.对铸铁试样,直接加载到试样破坏为止,记录最大扭矩.观察低碳钢,铸铁试样扭转破坏现象,并画出断口形状草图.实验结果的处理按计算直径d(最小平均直径)计算抗扭截面模量(),并将计算结果填人表格中;根据低碳钢试样的屈服扭矩计算其抗剪屈服强度根据低碳钢试样的最大扭矩计算其抗剪强度根据铸铁试样的最大扭矩计算其抗剪强度思考题根据低碳钢和铸铁的拉伸,压缩和扭转三种实验结果,分析总结两种材料的力学性能.低碳钢与铸铁试样扭转破坏的情况有什么不同为什么扭转试样上的标距刻线在扭转后发生了哪些变化说
8、明什么原理低碳钢铸铁力学性能比较1.低碳钢:低碳钢为塑性材料.开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。从实验我们知道,低碳钢试件可以被压成极簿的平板而一般不破坏。因此,其强度极限一般是不能确定的。我们只能确定的是压缩的屈服极限应力