资源描述:
《x届高考数学一轮复习常考热点拔高提分学案《函数的图象》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、x节函数的图象[知识能否忆起]一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.二、利用基本函数的图象作图1.平移变换(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.2.对称变换(1)y=f(-x)与y=f(x)的图象关于y
2、轴对称.(2)y=-f(x)与y=f(x)的图象关于x轴对称.(3)y=-f(-x)与y=f(x)的图象关于原点对称.(4)要得到y=
3、f(x)
4、的图象,可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.(5)要得到y=f(
5、x
6、)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.3.伸缩变换(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为原来的A倍,横坐标不变而得到.(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为原来的倍,纵坐标不变而得
7、到.[小题能否全取]1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是( )A.(2,2) B.(-1,1)C.(3,2)D.(2,3)解析:选D 一次函数f(x)的图象过点A(0,1),B(1,2),则f(x)=x+1,代入验证D满足条件.2.函数y=x
8、x
9、的图象大致是( )解析:选A 函数y=x
10、x
11、为奇函数,图象关于原点对称.3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=ax的图象可能是下列四个图象中的( )解析:选B 因a>0且a≠1,再对a分类讨论.4.(教材习题改编)为了得到
12、函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向______平移______个单位长度.答案:右 35.若关于x的方程
13、x
14、=a-x只有一个解,则实数a的取值范围是________.解析:由题意a=
15、x
16、+x令y=
17、x
18、+x=图象如图所示,故要使a=
19、x
20、+x只有一解则a>0.答案:(0,+∞) 1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.[注意] 对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.2.一个函数的图象关于原点(y轴)对称与两个函数的图象关于原点
21、(y轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.作函数的图象典题导入[例1] 分别画出下列函数的图象:(1)y=
22、lgx
23、;(2)y=2x+2;(3)y=x2-2
24、x
25、-1.[自主解答] (1)y=图象如图1.(2)将y=2x的图象向左平移2个单位.图象如图2.(3)y=图象如图3.由题悟法画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要
26、先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.以题试法1.作出下列函数的图象:(1)y=
27、x-x2
28、;(2)y=.解:(1)y=即y=其图象如图1所示(实线部分).(2)y==1+,先作出y=的图象,再将其向右平移1个单位,并向上平移1个单位即可得到y=的图象,如图2.识图与辨图典题导入[例2] (x·x高考)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为( )[自主解答] 法一:由y=f(x)的图象知f(x)=当x∈[0,2]时,2-x∈[0,2],所以f(2-x)=故y=-f(2-x)=法二:当x=0时,-f(2
29、-x)=-f(2)=-1;当x=1时,-f(2-x)=-f(1)=-1.观察各选项,可知应选B.[答案] B由题悟法“看图说话”常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.以题试法2.(1)如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2