introduction to advanced econometrics - …

introduction to advanced econometrics - …

ID:11735856

大小:687.00 KB

页数:107页

时间:2018-07-13

introduction to advanced econometrics - …_第1页
introduction to advanced econometrics - …_第2页
introduction to advanced econometrics - …_第3页
introduction to advanced econometrics - …_第4页
introduction to advanced econometrics - …_第5页
资源描述:

《introduction to advanced econometrics - …》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、TableofContentsLectureOutlines….……………………………………………………………………….2ClassicalLinearRegressionModel……….………………………………………………...2HypothesisTesting…………………………………………………………………………10GeneralLinearRegressionModel...………………………………………………………..15SeeminglyUnrelatedRegressionsModel…..……………………………………………….23Simult

2、aneousEquationsRegressionModel…………………………………………………31BinaryDiscreteChoiceRegressionModels.………………………………………………..44Fixed-EffectsandRandom-EffectsRegressionModelsforPanelData...…………………..54Duration(Survival)ModelsforTimetoEventData………………………………………..65Appendix……………………………………………………………………………………8

3、3StataGuidewithAssignments……………………..………………………………………..84107THECLASSICALLINEARREGRESSIONMODEL107INTRODUCTIONTheclassicallinearregressionmodelisastatisticalmodelthatdescribesadatagenerationprocess.SPECIFICATIONThespecificationoftheclassicallinearregressionmodelisdefinedbythefollowingset

4、ofassumptions.Assumptions1.Thefunctionalformislinearinparameters.Yt=b1Xt1+b2Xt2+…+bkXtk+mt2.Theerrortermhasmeanzero.E(mt)=0fort=1,2,…,T3.Theerrortermhasconstantvariance.Var(mt)=E(mt2)=s2fort=1,2,…,T4.Theerrorsareuncorrelated.Cov(mt,ms)=E(mt·ms)=0forallt¹s5.Theerrortermhasanormaldistr

5、ibution.mt~Nfort=1,2,…,T6.Theerrortermisuncorrelatedwitheachexplanatoryvariable.Cov(mt,Xti)=E(mt·Xti)=0fort=1,2,…,Tandi=1,2,…,K7.Theexplanatoryvariablesarenonrandomvariables.ClassicalLinearRegressionModelConciselyStatedThesampleofTmultivariateobservations(Yt,Xt1,Xt2,…,Xtk)aregenerate

6、dbyaprocessdescribedasfollows.Yt=b1Xt1+b2Xt2+…+bkXtk+mtmt~N(0,s2)fort=1,2,…,Toralternatively,Yt~N(b1Xt1+b2Xt2+…+bkXtk,s2)fort=1,2,…,TClassicalLinearRegressionModelinMatrixFormatThesampleofTmultivariateobservations(Yt,Xt1,Xt2,…,Xtk)aregeneratedbyaprocessdescribedbythefollowingsystemof

7、Tequations.Observation1Y1=b1X11+b2X12+…+bkX1k+m1Observation2Y2=b1X21+b2X22+…+bkX2k+m2………………………………………ObservationTYT=b1XT1+b2XT2+…+bkXTk+mTNotethefollowing.1)Thereisoneequationforeachmultivariateobservation.2)Theparametersareconstants,andthereforehavethesamevalueforeachmultivariateobse

8、rvation.3)Th

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。