欢迎来到天天文库
浏览记录
ID:11696524
大小:35.71 KB
页数:22页
时间:2018-07-13
《简答题——光电检测技术期末整理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、简答题——光电检测技术期末整理1、雪崩光电二极管的工作原理(当光敏二极管的PN结上加相当大的反向偏压(100~200V)时,在结区产生一个很强的电场,使进入场区的光生载流子获得足够的能量,在与原子碰撞时可使原子电离,而产生新的电子—空穴对。只要电场足够强,此过程就将继续下去,使PN结内电流急剧增加,达到载流子的雪崩倍增,这种现象称为雪崩倍增效应。)2、光生伏特效应与光电导效应的区别和联系?(共性:同属于内光电效应。区别:光生伏特效应是少数载流子导电的光电效应,而光电导效应是多数载流子导电的光电效应。)什么是敏感器?敏感器与传
2、感器的区别和联系?(将被测非电量转换为可用非电量的器件。共性:对被测非电量进行转换。区别:敏感器是把被测量转换为可用非电量,传感器是把被测非电量转换为电量)发光二极管的工作原理。(在PN结附近,N型材料中的多数载流子是电子,P型材料中的多数载流子是空穴,PN结上未加电压时构成一定的势垒,当加上正向偏压时,在外电场作用下,P区的空穴和N区的电子就向对方扩散运动,构成少数载流子的注入,从而在PN结附近产生导带电子和价带空穴的复合。一个电子和一个空穴对每一次复合,将释放出与材料性质有关的一定复合能量,这个能量会以热能、光能、或部分
3、热能和部分光能的形式辐射出来。说明光子器件与热电器件的特点。光子器件响应波长有选择性,一般有截止波长,超过该波长,器件无响应。响应快,吸收辐射产生信号需要的时间短,一般为纳秒到几百微秒热电器件响应波长无选择性,对可见光到远红外的各种波长的辐射同样敏感响应慢,一般为几毫秒PIN型的光电二极管的结构、工作原理及特点(它的结构分三层,即P型半导体和N型半导体之间夹着较厚的本征半导体I层,它是用高阻N型硅片做I层,然后把它的两面抛光,再在两面分别作N+和P+杂质扩散,在两面制成欧姆接触而得到PIN光电二极管。原理:层很厚,对光的吸收
4、系数很小,入射光很容易进入材料内部被充分吸收而产生大量的电子-空穴对,因而大幅度提供了光电转换效率,从而使灵敏度得以很高。两侧P层和N层很薄,吸收入射光的比例很小,I层几乎占据整个耗尽层,因而光生电流中漂移分量占支配地位,从而大大提高了响应速度。特点:PIN管的最大特点是频带宽,可达10GHz。缺点:由于I层的存在,管子的输出电流小,一般多为零点几微安至数微安。)热辐射检测器通常分为哪两个阶段?哪个阶段能够产生热电效应。(第一步:是热探测器吸收红外辐射引起温升,这一步对各种热探测器都一样;第二步:利用热探测器某些温度效应把温
5、升转换为电量的变化。第二阶段)8、光电检测系统由哪几部分组成?作用分别是什么?1.论述光电检测系统的基本构成,并说明各部分的功能。(10分)下面是一个光电检测系统的基本构成框图:(4分)(1)光源和照明光学系统:是光电检测系统中必不可少的一部分。在许多系统中按需要选择一定辐射功率、一定光谱范围和一定发光空间、分布的光源,以此发出的光束作为载体携带被测信息。(2)被测对象及光学变换:这里所指的是上述光源所发出的光束在通过这一环节时,利用各种光学效应,如反射、吸收、折射、干涉、衍射、偏振等,使光束携带上被检测对象的特征信息,形成
6、待检测的光信号。光学变换通常是用各种光学元件和光学系统来实现的,实现将被测量转换为光参量(振幅、频率、相位、偏振态、传播方向变化等)。(3)光信号的匹配处理:这一工作环节的位置可以设置在被检测对象前面,也可设在光学变换后面,应按实际要求来决定。光信号匹配处理的主要目的是为了更好地获得待测量的信息,以满足光电转换的需要。(4)光电转换:该环节是实现光电检测的核心部分。其主要作用是以光信号为媒质,以光电探测器为手段,将各种经待测量调制的光信号转换成电信号(电流、电压或频率),以利于采用目前最为成熟的电子技术进行信号的放大、处理、
7、测量和控制等。(5)电信号的放大与处理:这一部分主要是由各种电子线路所组成。光电检测系统中处理电路的任务主要是解决两个问题:①实现对微弱信号的检测;②实现光源的稳定化。(6)存储、显示与控制系统:许多光电检测系统只要求给出待测量的具体值,即将处理好的待测量电信号直接经显示系统显示。9、简述光电检倍增管的结构组成和工作原理(光电倍增管主要由入射窗口、光电阴极、电子光学系统、电子倍增系统、和阳极5部分组成。@1光照射到阴极转换成电子,出射到下一电极。@2电子撞到下一电极,倍增,更多的电子出射,直奔下一电极。@.3经过若干次倍增,
8、到达阳极,形成信号电流。)10简述CCD器件的结构和工作原理(MOS电容器件+输入输出端=CCDCcd的工作原理:由目标发射来的光学图像,经透镜聚焦后成像在CCD的像敏单元上;在耗尽层中或距耗尽层为一定范围内的光生电子迅速被势阱收集,汇集到界面附近形成电荷包,存储在像敏单元中。电荷包的大小
此文档下载收益归作者所有