欢迎来到天天文库
浏览记录
ID:11677497
大小:335.00 KB
页数:26页
时间:2018-07-13
《基于小波包分析的声音特性提取【论文】》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、分类号:TN912.3UDC:D10621-408-(2010)1088-0密级:公开编号:2006101055成都信息工程学院学位论文基于小波包分析的声音特性提取论文作者姓名:黄现云申请学位专业:通信工程申请学位类别:工学学士指导教师姓名(职称):张杰(讲师)论文提交日期:2010年06月4日第IV页共41页基于小波包分析的声音特性提取摘要说话人识别就是利用说话人的语音特征对说话人身份进行辨识或确认。与语音识别一样,说话人识别也是在提取原始语音信号某些特征参数的基础上,建立相应的模板和模型,然后按照一定的判决规则进行识别。其中前期特征参数提取的效果直接影响
2、到后期识别的准确性。本设计完成了一个基于小波包分析的声音特征参数的提取模型。论文首先介绍小波分析理论的基本知识,阐述了小波理论、小波分析在声音特征提取方面的应用,然后在分析MFCC提取原理的基础上,结合小波包分析理论,得到特征参数。用特征参数提取方法通过对两个人的数字音频样本提取的特征参数对比来观察各个参数之间的区别。仿真实验证明该提取方法可以作为区别说话人的声音特征提取方法,配合识别算法可以达到较高的识别率。关键词:小波包;梅尔倒谱系数;特征参数ExtractionofFeatureCoefficientBasedonWaveletPacketAnalys
3、isAbstractSpeakerRecognitionistousethespeakerfeatureontheidentityofthespeakeridentificationorconfirmation.Aswithspeechrecognition,speakerrecognitionistoextractsomecharacteristicparametersoftheoriginalspeechsignalbasedontheestablishmentofappropriatetemplatesandmodels,andaccordingtos
4、omedecisionrulesforrecognition.Oneearlyfeatureextractiondirectlyaffectstheeffectoflatetherecognitionaccuracy.Thedesigniscompleted,awaveletpacketanalysisbasedonasimplemodelofthevoicefeatureparameterextraction.Paperfirstintroducesthebasicsofwaveletanalysistheory,Describedthewaveletth
5、eoryandwaveletanalysisintheapplicationofsoundfeatureextraction,andthenwecangettwocharacteristicparametersbasedontheanalysisofMFCCextractionandthetheoryofwaveletpacketanalysis.Featureextractionmethodusedbydigitalaudiosamplesoftwocharacteristicparametersextractedcomparedtoobservethed
6、istinctionbetweenthevariousparameters.Simulationresultsshowthattheextractionmethodcandistinguishthespeaker'svoiceasafeatureextractionmethod,withtherecognitionalgorithmcanachievehigherrecognitionrate.Keywords:Waveletpacket;Melcepstral;Parameter目录论文总页数:21页1引言11.1课题背景11.2国内外研究现状11.3本课
7、题研究的意义11.4本课题研究的方法12小波理论22.1小波分析背景22.2小波变换简介22.3从傅里叶变换到小波分析22.4提升小波变换概述32.5小波包分析32.6小波信号分析在声音处理中的应用43常见声音特征参数提取算法43.1分类43.1.1线性预测倒普系数法(LPC)53.1.2梅尔滤波器提取法(MEL)63.1.3小波变换法(DWT—MFC)[3]63.1.4小波包分析法(WPTC)73.2算法比较74基于小波包分析的声音特性提取实现84.1概述84.2总体结构84.3程序设计84.3.1语音信号分帧、加窗84.3.2Mel滤波器组94.4音频特
8、征参数提取结果104.5特征参数结果分析13结论18
此文档下载收益归作者所有