高斯平面直角坐标系和独立平面直角坐标系

高斯平面直角坐标系和独立平面直角坐标系

ID:11634666

大小:126.50 KB

页数:11页

时间:2018-07-13

高斯平面直角坐标系和独立平面直角坐标系_第1页
高斯平面直角坐标系和独立平面直角坐标系_第2页
高斯平面直角坐标系和独立平面直角坐标系_第3页
高斯平面直角坐标系和独立平面直角坐标系_第4页
高斯平面直角坐标系和独立平面直角坐标系_第5页
资源描述:

《高斯平面直角坐标系和独立平面直角坐标系》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高斯平面直角坐标系和独立平面直角坐标系测量学中使用的平面直角坐标系统包括高斯平面直角坐标系和独立平面直角坐标系高斯平面直角坐标系简称高斯坐标,是经高斯投影后的地面点坐标。地面点的x坐标值,表征此地面点至赤道的距离,中国位于北半球,X坐标值均为正值,“位于北半球”的“N”也常省略;地面点的Y坐标值、表征此地面点至中央子午线的距离,当地面点位于中央子午线以东时为正,位于以西时为负。通常将纵坐标轴向西平移500千米,不仅可保证六度带投影和三度带投影后的Y坐标值不出现负值,并可使其千米数是3位数,以便与前面

2、所加的带号区别开。全球有60个(对于六度带投影)或120个(对于三度带投影)地面点具有相同的Y坐标值,为使Y坐标值能与地球椭球体面上的地面点一一对应,并反映地面点所处投影带的带号,常在移轴后的Y坐标值之前,加上相应的带号,此时Y坐标值连同相应的X坐标值,称高斯坐标的通用值(常称高斯坐标)。而将未经移轴加带号者称高斯坐标的自然值。当Y坐标值大于500千米时,表示此地面点位于中央子午线以东,反之位于以西。中国疆域位于六度带投影的第13带~23带和三度带投影的第25带~45带之间,故带号24作为区分六度带

3、投影抑或三度带投影的标志。如:中国有两地面点分别为XA=432123.567米,YA=19623456.789米;XB=345678.912米,YB=38356789.123米。即此地面点A位于赤道以北432123.567米、六度带投影的第19带,其中央子午线的经度为东经110,位于中央子午线以东123456.789米;地面点B位于赤道以北345678.912米、三度带投影的第38带,其中央子午线的经度为东经140°,位于中央子午线以西143210.877米。独立平面直角坐标系当地形图测绘或施工测量

4、的面积较小时,可将测区范围内的椭球面或水准面用水平面来代替,在此水平面上设一坐标原点,以过原点的南北方向为纵轴(向北为正,向南为负),东西方向为横轴(向东为正,向西为负),建立独立的平面直角坐标系,测区内任一点的平面位置即可以其坐标值表示。11无论是高斯平面直角坐标系还是独立平面直角坐标系,均以纵轴为X轴,横轴为Y轴,这与数学上的平面坐标系X轴和Y轴正好相反,其原因在于测量与数学上表示直线方向的方位角定义不同。测量上的方位角为纵轴的指北端起始,顺时针至直线的夹角;数学上的方位角则为横轴的指东端起始,

5、逆时针至直线的夹角。将二者的X轴和Y轴互换,是为了仍旧可以将已有的数学公式用于测量计算。出于同样的原因,测量与数学上关于坐标象限的规定也有所不同。二者均以北东为第一象限,但数学上的四个象限为逆时针递增,而测量上则为顺时针递增。高程系统地面点空间位置的第三维坐标是高程。地面点的高程,是指地面点沿铅垂线到一定基准面的距离。测量中定义以大地水准面作基准面的高程为绝对高程,简称高程.平面坐标一般都是小的工程使用,国家大型工程肯定采用高斯坐标系统,尤其是跨区域跨界的工程。此外还有城市独立坐标系统。比如南京就有

6、南京市自己的南京地方坐标系统。高程获得的方法有的是直接从高级点往低级点引测的,有的是靠GPS直接测量WGS-84坐标后再根据相关转换参数转换的,现在大多数用后者的方法多,比较快,前者方法作业范围也只是小范围的。此外我国的高程系统除了黄海以外还有大连、广州、大沽、废黄河口、吴淞、珠江、波罗的海等,比如我知道的南京市政工程多数采用吴淞高程系统。11高斯平面直角坐标系(高斯-克吕格(Gauss-Kruger)投影与UTM投影)大地坐标系是大地测量的基本坐标系。常用于大地问题的细算,研究地球形状和大小,编制

7、地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。椭球体面是一个不可直接展开的曲面,故将椭球体面上的元素按一定条件投影到平面上,总会产生变形。测量上常以投影变形不影响工程要求为条件选择投影方法。地图投影有等角投影、等面积投影和任意投影三种。其中等角投影又称为正形投影,它保证在椭球体面上的微分图形投影到平面后将保持相似。这是地形图的基本要求。正形投影有两个基

8、本条件:①保角条件,即投影后角度大小不变。②长度变形固定性,即长度投影后会变形,但是在一点上各个方向的微分线段变形比m是个常数k:式中:ds—投影后的长度,dS—球面上的长度。1.高斯投影的概念高斯是德国杰出的数学家、测量学家。他提出的横椭圆柱投影是一种正形投影。它是将一个横椭圆柱套在地球椭球体上,如下图所示:11椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。此子午线称中央子午线。然后将椭球体面上的点、线按正形投影条件投影到椭圆柱

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。