多重共线性问题的几种解决方法

多重共线性问题的几种解决方法

ID:1146865

大小:117.50 KB

页数:6页

时间:2017-11-08

多重共线性问题的几种解决方法_第1页
多重共线性问题的几种解决方法_第2页
多重共线性问题的几种解决方法_第3页
多重共线性问题的几种解决方法_第4页
多重共线性问题的几种解决方法_第5页
资源描述:

《多重共线性问题的几种解决方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、多重共线性问题的几种解决方法在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,Xk中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考:1、保留重要解释变量,去掉次要或可替代解释变量2、用相对数变量替代绝对

2、数变量3、差分法4、逐步回归分析5、主成份分析6、偏最小二乘回归7、岭回归8、增加样本容量这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。具体方法分为两步:第一步,先将被解释变量y对每个解释变量作简单回归:对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,

3、根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。2.如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。不利变量未必是多余的,如果它可能对被

4、解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。如果通过检验证明回归模型存在明显线性相关的两个解释变量中的其中一个可以被另一个很好地解释,则可略去其中对被解释变量影响较小的那个变量,模型中保留影响较大的那个变量。下边我们通过实例来说明逐步回归分析方法在解决多重共线性问题上的具体应用过程。具体实例例1设某地10年间有关服装消费、可支配收入、流动资产、服装类物价指数、总物价指数的调查数据如表1,请建立需求函数模型。表1 服装消费及相关变量调查数据年份服装开支C可支配收入Y流动资产L服装类

5、物价指数Pc总物价指数P0(百万元)(百万元)(百万元)1992年=1001992年=10019888.482.917.1929419899.688.021.39396199010.499.925.19697199111.4105.329.09497199212.2117.734.0100100199314.2131.040.0101101199415.8148.244.0105104199517.9161.849.0112109199619.3174.251.0112111199720.8184.753.0112111 (1)设对服

6、装的需求函数为用最小二乘法估计得估计模型:模型的检验量得分,R2=0.998,D·W=3.383,F=626.4634  R2接近1,说明该回归模型与原始数据拟合得很好。由得出拒绝零假设,认为服装支出与解释变量间存在显著关系。(2)求各解释变量的基本相关系数上述基本相关系数表明解释变量间高度相关,也就是存在较严重的多重共线性。(3)为检验多重共线性的影响,作如下简单回归:各方程下边括号内的数字分别表示的是对应解释变量系数的t检验值。观察以上四个方程,根据经济理论和统计检验(t检验值=41.937最大,拟合优度也最高),收入Y是最重要的

7、解释变量,从而得出最优简单回归方程。(4)将其余变量逐个引入,计算结果如下表2:表2 服装消费模型的估计结果分析:①在最优简单回归方程中引入变量Pc,使R2由0.9955提高到0.9957;根据经济理论分析,正号,负号是合理的。然而t检验不显著(),而从经济理论分析,Pc应该是重要因素。虽然Y与Pc高度相关,但并不影响收入Y回归系数的显著性和稳定性。依照第1条判别标准,Pc可能是“有利变量”,暂时给予保留。②模型中引入变量L,R2由0.9957提高到0.9959,值略有提高。一方面,虽然Y与L,Pc与L均高度相关,但是L的引入对回归系

8、数、的影响不大(其中的值由0.1257变为0.1387,值由-0.0361变为-0.0345,变化很小);另一方面,根据经济理论的分析,L与服装支出C之间应该是正相关关系,即的符号应该为正号而非负号,依照第2条判别标准,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。