资源描述:
《线性回归模型的研究毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、丽水学院2014届学生毕业(设计)论文线性回归模型的研究学院:理学院班级:金融数学10本姓名:俞超迪指导老师:杨毅【摘要】:本文首先对回归分析的定义、主要内容、基本思想、实现过程进行了阐述,指出了它的优点及存在的问题。对NBA比赛中的各因素和中国人口的预测进行了研究。最后对整篇文章做了个总结。【关键词】:回归分析;回归模型;检验;预测1引言回归分析最早是由19世纪末期高尔顿(Sir Francis Galton)发展的。1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高或的其孩子也越高,反之则越矮。他把儿子跟父母身高
2、这种现象拟合成一种线性关系。但是他还发现了个有趣的现象,高个子的人生出来的儿子往往比他父亲矮一点更趋向于平均身高,矮个子的人生出来的儿子通常比他父亲高一点也趋向于平均身高。高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的回归”。于是“线形回归”的术语被沿用下来了。回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。按照参数估计方法可以分为主成分回归、偏最小二乘回归、
3、和岭回归。一般采用线性回归分析,由自变量和规定因变量来确定变量之间的因果关系,从而建立线性回归模型。模型的各个参数可以根据实测数据解。接着评价回归模型能否够很好的拟合实际数据;如果不能够很好的拟合,则重新拟合;如果能很好的拟合,就可以根据自变量进行下一步推测。回归分析是重要的统计推断方法。在实际应用中,医学、农业、生物、林业、金融、管理、经济、社会等诸多方面随着科学的发展都需要运用到这个方法。从而推动了回归分析的快速发展。16丽水学院2014届学生毕业(设计)论文2回归分析的概述2.1回归分析的定义回归分析是应用极其广泛的数据分析方法之一。回归分析(regressionanalys
4、is)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。2.2回归分析的主要内容(1)从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。(2)对这些关系式的可信程度进行检验。(3)在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。(4)利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。2.3
5、一元线性回归与多元线性回归的分析一元线性回归模型,是分析两个变量之间相互关系的数学方程式,其一般表达式为y=a+bx式中,y表示因变量的估计值,x表示自变量,a,b称为回归模型的待定参数,其中b又称为回归系数。上述的回归方程式在平面坐标系中表现为一条直线即回归直线。当b>0时y随x的增加而增加,两变量之间为正相关关系;当b<0时,y随x的增加而减少,两变量之间为负相关关系;当y为一个常量时,不随x的变动而变动。这样就为我们判断现象之间的关系,分析现象之间是否处于正常状态提供了一条标准。多元线性回归模型旨在分析两个或者两个以上的自变量作用后产生的结果,即多个自变量下的因变量结果,研究
6、的是随机变量y与多个普通变量x1,x2,…xp,(p≥2),的相关关系。表达式为y=β0+β1x1+β2x2+…βpxp+ε,对随机误差项ε常假定E(ε)=0,Var(ε)=σ2。并且称E(y)=β0+β1x1+β2x2+…βpxp为理论回归方程。在实际应用中,如果获得n组观测数据(xi1,xi2,…,xip;yi),i=1,2,…,n,则线性回归模型变为y=β0+β1xi1+β2xi2+…βpxip+εi。并且,量y与自变量x之间的关系往往是非线性关系,而不是简单的线性关系。但在非线性回归分析研究实际问题时,往往选择可以通过一定变换后能转换成线性关系的研究模型,从而避免了非线性回
7、归分析的计算的复杂性。随着技术的不断进步,研究过程中经常运用到计算机,复杂的非线性回归分析模型也将被应用在研究中,而且会越来越频繁。16丽水学院2014届学生毕业(设计)论文2.4回归分析的基本思想在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验