高考数学参数方程

高考数学参数方程

ID:11417353

大小:1.61 MB

页数:28页

时间:2018-07-11

高考数学参数方程_第1页
高考数学参数方程_第2页
高考数学参数方程_第3页
高考数学参数方程_第4页
高考数学参数方程_第5页
资源描述:

《高考数学参数方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高考复习之导数方程一、考点介绍导数属于新增内容,是高中数学知识的一个重要的交汇点,命题范围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,不但一定出大题而相应有小题出现。主要考查导数有关的概念、计算和应用。利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,不但突出了能力的考查,同时也注意了高考重点与热点,这一切对考查考生的应用能力和创新意识都大有益处。1.了解导数概念的某些实际背景(如瞬时速度、加速

2、度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.二、高考真题1.(2008全国一21).(本小题满分12分)(注意:在试题卷上作答无效)已知函数,.(Ⅰ)讨论函数的单调区间;(Ⅱ)设函数在区间内是减函数,求的取值范围.解:(1)求导:当时,,在上递增当,求得两根为即在递增,递减

3、,递增(2),且解得:2.(2008全国二21).(本小题满分12分)设,函数.(Ⅰ)若是函数的极值点,求的值;(Ⅱ)若函数,在处取得最大值,求的取值范围.解:(Ⅰ).因为是函数的极值点,所以,即,因此.经验证,当时,是函数的极值点.4分(Ⅱ)由题设,.当在区间上的最大值为时,,即.故得.9分反之,当时,对任意,,而,故在区间上的最大值为.综上,的取值范围为.12分3.(2008山东卷21)(本小题满分12分)已知函数其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.(Ⅰ)解:由已知得函数f(x)的定

4、义域为{x

5、x>1},当n=2时,所以(1)当a>0时,由f(x)=0得>1,<1,此时f′(x)=.当x∈(1,x1)时,f′(x)<0,f(x)单调递减;当x∈(x1+∞)时,f′(x)>0,f(x)单调递增.(2)当a≤0时,f′(x)<0恒成立,所以f(x)无极值.综上所述,n=2时,当a>0时,f(x)在处取得极小值,极小值为当a≤0时,f(x)无极值.(Ⅱ)证法一:因为a=1,所以当n为偶数时,令则g′(x)=1+>0(x≥2).所以当x∈[2,+∞]时,g(x)单调递增,又g(2)=0因此≥g(2)=0恒成立,所以f(x)≤x-1成立.当n为奇数时,要证≤x-1,由于<0,

6、所以只需证ln(x-1)≤x-1,令h(x)=x-1-ln(x-1),则h′(x)=1-≥0(x≥2),所以当x∈[2,+∞]时,单调递增,又h(2)=1>0,所以当x≥2时,恒有h(x)>0,即ln(x-1)<x-1命题成立.综上所述,结论成立.证法二:当a=1时,当x≤2,时,对任意的正整数n,恒有≤1,故只需证明1+ln(x-1)≤x-1.令则当x≥2时,≥0,故h(x)在上单调递增,因此  当x≥2时,h(x)≥h(2)=0,即1+ln(x-1)≤x-1成立.故  当x≥2时,有≤x-1.即f(x)≤x-1.4..(2008湖南卷21)(本小题满分13分)已知函数f(x)=ln2

7、(1+x)-.(I)求函数的单调区间;(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数).求的最大值.解:(Ⅰ)函数的定义域是,设则令则当时,在(-1,0)上为增函数,当x>0时,在上为减函数.所以h(x)在x=0处取得极大值,而h(0)=0,所以,函数g(x)在上为减函数.于是当时,当x>0时,所以,当时,在(-1,0)上为增函数.当x>0时,在上为减函数.故函数的单调递增区间为(-1,0),单调递减区间为.(Ⅱ)不等式等价于不等式由知,设则由(Ⅰ)知,即所以于是G(x)在上为减函数.故函数G(x)在上的最小值为所以a的最大值为5..(2008陕西卷21).(本小题满分12分)已知

8、函数(且,)恰有一个极大值点和一个极小值点,其中一个是.(Ⅰ)求函数的另一个极值点;(Ⅱ)求函数的极大值和极小值,并求时的取值范围.解:(Ⅰ),由题意知,即得,(*),.由得,由韦达定理知另一个极值点为(或).(Ⅱ)由(*)式得,即.当时,;当时,.(i)当时,在和内是减函数,在内是增函数.,,由及,解得.(ii)当时,在和内是增函数,在内是减函数.,恒成立.综上可知,所求的取值范围为.6.(2008重庆卷20)(本小题满分13分.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。