欢迎来到天天文库
浏览记录
ID:11330999
大小:103.50 KB
页数:4页
时间:2018-07-11
《有向图的邻接矩阵》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、有向图的邻接矩阵 设有向图,,。令为邻接到的边的条数,称为D的邻接矩阵,记作。 为图7.12的邻接矩阵,不难看出: (1)(即第i行元素之和为的出度),。 (2)(即第j列元素之和为的入度),。 (3)由(1),(2)可知,为D中边的总数,也可看成是D中长度为1的通路总数,而为D中环的个数,即D中长度为1的回路总数。 D中长度大于等于2的通路数和回路数应如何计算呢? 为此,先讨论长度等于2的通路数和回路数。 在图D中,从顶点到顶点的长度等于2的通路,中间必经过一顶点。对于任意的k,若有通路,必有且,即。反
2、之,若D中不存在通路,必有或,即。于是在图D中从顶点到顶点的长度等于2的通路数为: 由矩阵的乘法规则知,正好是矩阵中的第i行与第j列元素,记,即就是从顶点到顶点的长度等于2的通路数,时,表示从顶点到顶点的长度等于2的回路数。 因此,即矩阵中所有元素的和为长度等于2的通路总数(含回路),其中对角线的元素和为长度等于2的回路总数。 根据以上分析,则有下面的推论。 定义有向图,,D中长度为的通路数和回路数可以用矩阵(简记)来表示,这里,其中, 即 则为顶点到顶点长度为的通路数,为到自身长度为的回路数。中所有元素之和为D中长
3、度为的通路数,而中对角线上元素之和为D中始于(终于)各顶点的长度为的回路数。 在图7.12中,计算,,如下: 观察各矩阵发现,,,。于是,D中到长度为2的通路有3条,长度为3的通路有4条,长度为4的通路有6条。由,,可知,D中到自身长度为的回路各有1条(此时回路为复杂的)。由于,所以D中长度为2的通路总数为10,其中有3条回路。 从上述分析,可得下面定理。 定理7.5设为有向图D的邻接矩阵,,则中元素为到长度为的通路数,为D中长度为的通路总数,其中为D中长度为的回路总数。 若再令矩阵 , ,
4、…… , 上面定理有下面推论。 推论 设,则中元素为D中到长度小于等于的通路数,为D中长度小于等于的通路总数,其中为D中长度小于等于的回路总数。
此文档下载收益归作者所有