数据挖掘实验四-rbf神经网络报告

数据挖掘实验四-rbf神经网络报告

ID:11304727

大小:427.50 KB

页数:24页

时间:2018-07-11

数据挖掘实验四-rbf神经网络报告_第1页
数据挖掘实验四-rbf神经网络报告_第2页
数据挖掘实验四-rbf神经网络报告_第3页
数据挖掘实验四-rbf神经网络报告_第4页
数据挖掘实验四-rbf神经网络报告_第5页
资源描述:

《数据挖掘实验四-rbf神经网络报告》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实验四、RBF神经网络一、实验目的通过计算机编程实现并验证RBF神经网络的曲线拟合及模式分类能力。二、实验内容1)用Matlab实现RBF神经网络,并对给定的曲线样本集实现拟合;2)通过改变实验参数,观察和分析影响RBF神经网络的结果与收敛速度的因素;三、实验原理、方法和手段RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。简单说

2、明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。样本点总共有P个。RBF的方法是要选择P

3、个基函数,每个基函数对应一个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。

4、

5、X-Xp

6、

7、表示差向量的模,或者叫2范数。基于为径向基函数的插值函数为:输入X是个m维的向量,样本容量为P,P>m。可以看到输入数据点Xp是径向基函数φp的中心。隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。将插值条件代入:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度无关,当Φ可逆时,有。对于一大类函数,当输入的X各不相同时,Φ就是可逆的。下面的几个函数

8、就属于这“一大类”函数:1)Gauss(高斯)函数2)ReflectedSigmoidal(反常S型)函数3)Inversemultiquadrics(拟多二次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。完全内插存在一些问题:1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。由于输入样本中包含噪声,所以我们可以设计隐藏层大小为K,K

9、个数等于训练样本数目,当训练样本数远远大于物理过程中固有的自由度时,问题就称为超定的,插值矩阵求逆时可能导致不稳定。拟合函数F的重建问题满足以下3个条件时,称问题为适定的:解的存在性解的唯一性解的连续性不适定问题大量存在,为解决这个问题,就引入了正则化理论。正则化理论正则化的基本思想是通过加入一个含有解的先验知识的约束来控制映射函数的光滑性,这样相似的输入就对应着相似的输出。寻找逼近函数F(x)通过最小化下面的目标函数来实现:加式的第一项好理解,这是均方误差,寻找最优的逼近函数,自然要使均方误差最小。

10、第二项是用来控制逼近函数光滑程度的,称为正则化项,λ是正则化参数,D是一个线性微分算子,代表了对F(x)的先验知识。曲率过大(光滑度过低)的F(x)通常具有较大的

11、

12、DF

13、

14、值,因此将受到较大的惩罚。直接给出(1)式的解:权向量(2)G(X,Xp)称为Green函数,G称为Green矩阵。Green函数与算子D的形式有关,当D具有旋转不变性和平移不变性时,。这类Green函数的一个重要例子是多元Gauss函数:正则化RBF网络输入样本有P个时,隐藏层神经元数目为P,且第p个神经元采用的变换函数为G(X

15、,Xp),它们相同的扩展常数σ。输出层神经元直接把净输入作为输出。输入层到隐藏层的权值全设为1,隐藏层到输出层的权值是需要训练得到的:逐一输入所有的样本,计算隐藏层上所有的Green函数,根据(2)式计算权值。广义RBF网络Cover定理指出:将复杂的模式分类问题非线性地映射到高维空间将比投影到低维空间更可能线性可分。广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。从隐藏层到输出层是对高维空间的数据进行线性

16、分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。注意广义RBF网络只要求隐藏层神经元个数大于输入层神经元个数,并没有要求等于输入样本个数,实际上它比样本数目要少得多。因为在标准RBF网络中,当样本数目很大时,就需要很多基函数,权值矩阵就会很大,计算复杂且容易产生病态问题。另外广RBF网与传统RBF网相比,还有以下不同:径向基函数的中心不再限制在输入数据点上,而由训练算法确定。各径向基函数的扩展常数不再统一,而由训练算法确定。输

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。