欢迎来到天天文库
浏览记录
ID:11286077
大小:35.50 KB
页数:4页
时间:2018-07-11
《太阳能电池的技术发展和应用状况》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、太阳能电池的技术发展和应用状况关键词:光电池;材料;技术;发展摘要:光伏技术可直接将太阳的光能转换为电能,用此技术制作的光电池使用方便,并且使用效率很高,从而具有很广阔的市场。还有就是了解他的一些制作材料。光伏技术可直接将太阳的光能转换为电能,用此技术制作的光电池使用方便,特别是近年来微小型半导体逆变器迅速发展,促使其应用更加快捷。美、日、欧和发展中国家都制定出庞大的光伏技术发展计划,开发方向是大幅度提高光电池转换效率和稳定性,降低成本,不断扩大产业。目前已有80多个国家和地区形成商业化、半商业化生产能力,
2、年均增长达16%,市场开拓从空间转向地面系统应用,甚至用于驱动交通工具。据报道,全球发展、建造太阳能住宅(光电池作屋顶、外墙、窗户等建材用)投资规模为600亿美元,而到2005年还会再翻一倍达1200亿美元,光伏技术制作的光电池有望成为21世纪的新能源。以下按其材料分类,展示光伏技术、产业及市场发展动向。太阳能之所以引起全世界的关注,一个重要原因是:由于这些年来人们对太阳能光电池所做的努力,已经使多晶硅光电池转化率达到15%,单晶硅光电池转化率是20%,砷化镓光电池是25%,在实验室中特制的砷化镓光电池甚至
3、已高达35%-36%!还有就是在国际市场上,目前太阳能电池的价格大约为每瓦3.15美元,并网系统价格为每瓦6美元,发电成本为每千瓦小时0.25美元。也就是说,太阳能光电系统的发电成本,约为1996年美国煤电成本4.8至5.5美分/千瓦时的5倍。注意到太阳能光电池的发电成本在沙漠地区和日常生活地区在日照时间有较大差别,所以,实际上现有太阳能光电池的成本约是煤电成本的5至8倍。几种光电池: 晶体硅光电池 晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结而制作成的,生产
4、技术成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及接触电极等技术,提高材料中的载流子收集效率,优化抗反射膜、凹凸表面、高反射背电极等方式,光电转换效率有较大提高。单晶硅光电池面积有限,目前比较大的为Φ10至20cm的圆片,年产能力46MW/a。目前主要课题是继续扩大产业规模,开发带状硅光电池技术,提高材料利用率。国际公认最高效率在AM1.5条件下为24%,空间用高质量的效率在AM0条件约为13.5?18%,地面用大量生产的在AM1条件下多在11?18%之间。以定向凝固
5、法生长的铸造多晶硅锭代替单晶硅,可降低成本,但效率较低。优化正背电极的银浆和铝浆丝网印刷,切磨抛工艺,千方百计进一步降成本,提高效率,大晶粒多晶硅光电池的转换效率最高达18.6%。 非晶硅光电池 a-Si(非晶硅)光电池一般采用高频辉光放电方法使硅烷气体分解沉积而成的。由于分解沉积温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积约1μm厚的薄膜,易于大面积化(0.5m×1.0m),成本较低,多采用pin结构。为提高效率和改善稳定性,有时还制成三层pin等多层叠层式结构,或是插入一些过渡层。其商品化产
6、量连续增长,年产能力45MW/a,10MW生产线已投入生产,全球市场用量每月在1千万片左右,居薄膜电池首位。发展集成型a-Si光电池组件,激光切割的使用有效面积达90%以上,小面积转换效率提高到14.6%,大面积大量生产的为8-10%,叠层结构的最高效率为21%。研发动向是改善薄膜特性,精确设计光电池结构和控制各层厚度,改善各层之间界面状态,以求得高效率和高稳定性。 多晶硅光电池 p-Si(多晶硅,包括微晶)光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上正掀起的前沿性研究热点
7、。在单晶硅衬底上用液相外延制备的p-Si光电池转换效率为15.3%,经减薄衬底,加强陷光等加工,可提高到23.7%,用CVD法制备的转换效率约为12.6-17.3%。采用廉价衬底的p-Si薄膜生长方法有PECVD和热丝法,或对a-Si:H材料膜进行后退火,达到低温固相晶化,可分别制出效率9.8%和9.2%的无退化电池。微晶硅薄膜生长与a-Si工艺相容,光电性能和稳定性很高,研究受到很大重视,但效率仅为7.7%。大面积低温p-Si膜与-Si组成叠层电池结构,是提高a-S光电池稳定性和转换效率的重要途径,可更充
8、分利用太阳光谱,理论计算表明其效率可在28%以上,将使硅基薄膜光电池性能产生突破性进展。铜铟硒光电池 CIS(铜铟硒)薄膜光电池已成为国际光伏界研究开发的热门课题,它具有转换效率高(已达到17.7%),性能稳定,制造成本低的特点。CIS光电池一般是在玻璃或其它廉价衬底上分别沉积多层膜而构成的,厚度可做到2?3μm,吸收层CIS膜对电池性能起着决定性作用。现已开发出反应共蒸法和硒化法(溅射、蒸发、电沉积等)两大类
此文档下载收益归作者所有