HyperWorks在精密铸造产品优化设计中的应用.doc

HyperWorks在精密铸造产品优化设计中的应用.doc

ID:11281225

大小:35.50 KB

页数:9页

时间:2018-07-11

HyperWorks在精密铸造产品优化设计中的应用.doc_第1页
HyperWorks在精密铸造产品优化设计中的应用.doc_第2页
HyperWorks在精密铸造产品优化设计中的应用.doc_第3页
HyperWorks在精密铸造产品优化设计中的应用.doc_第4页
HyperWorks在精密铸造产品优化设计中的应用.doc_第5页
资源描述:

《HyperWorks在精密铸造产品优化设计中的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HyperWorks在精密铸造产品优化设计中的应用  论文关键词:  拓扑优化形状优化精密铸造后悬置支架有限元分析  论文摘要:本文主要阐述借助于Alatir公司的Hyperworks结构优化软件,对精密铸造产品进行结构优化设计,且以对某汽车驾驶室后悬置支架的结构优化为例,着重介绍了拓扑优化和形状优化在精密铸造产品结构设计上的应用方法及功能。事实表明拓扑优化和形状优化的联合应用,对精密铸造产品的结构设计起到非常关键的帮助作用,最后通过此软件对优化后的产品结构进行有限元分析,验证优化后产品结构的强度和刚度。  

2、HyperWorks在精密铸造产品优化设计中的应用  一、引言在当前的汽车工业中,减轻设计重量和缩短设计周期是两个突出的问题,在传统的设计中,由于机械产品机构的复杂性,长期以来主要应用经验类比设计,对产品结构作定性分析和经验类比估算,在决定实际结构时,一般都取较大的安全系数,结果使得产品都是“傻”、“大”、“粗”,使材料的潜力得不到充分发挥,产品的性能也得不到充分的把握。所以传统的汽车设计思路已经不能满足当前设计的需要。汽车轻量化设计开始占据了汽车发展中的主要地位,它既可以提高车辆的动力性,降低成本,减少能源

3、消耗又能减少污染。但是,简单的汽车轻量化设计却是一把双刃剑,它在减轻汽车重量的同时,也牺牲了车辆的强度和刚度,甚至对产品的结构寿命也产生影响,在此情况下,有限元分析方法在汽车设计中的合理应用就得到了充分体现,经过近几年的实践证明,Altair公司的有限元分析技术以及拓扑优化技术在汽车行业获得了非常成功的应用。特别是对于一些结构复杂的汽车铸造结构件,Hyperworks的有限元分析技术、拓扑优化和形状优化技术的推广使得材料的潜能及铸造的优势得到了充分的发挥。本文将详细介绍利用Hyperworks的拓扑优化和形状

4、优化技术对东风商用车驾驶室后悬置支架进行减重优化设计的应用过程。以及如何应用Hyperworks验证改进结构后的应力和应变情况,使该后悬置支架减重优化后的结构能够满足产品的使用性能和铸造工艺性要求。  二、有限元法的概念和优化设计流程确立 2.1有限元法和有限单元的概念9有限元法又称有限单元法,是结构分析的一种数值计算方法,它随着计算机的发展而应运而生,并得到了广泛应用,目前已成为工程数值分析的有力工具。在实际工程应用中,我们首先把CAD模型分割成有限个实体或者壳单元。一般作为实体单元所适合的结构,是具有三维

5、形状变化的物体,不太适合棒状、平板状的物体。实体单元是利用3D-CAD所作好的实体模型,能够拿来就能作有限元模型处理,这一点非常方便。但是用实体单元制成的模型,因为节点数往往较多在分析时务必注意计算机磁盘用量和计算时间。  另外从实体单元能够把三维图形原封不动地适用于结构分析的模型上这一点来说,对于结构复杂的零件,采用实体单元是很好用的单元。实体单元有六面体、五面体、四面体,在用自动生成的情况下使用四面体较多。从分析精度而言,使用六面体为好,自动生成的三维形状也有必须限制用于六面体的等等,五面体单元在评价应力

6、时尽量不使用此方法为好。壳单元有三角形和四边形单元,对于板单元尽量使用四边形单元,对于实体单元尽量使用六面体单元。使用三角形或四面体单元与使用四边形或六面体单元时相比有使结构增加刚性的模型化倾向。在本文我们所做的驾驶室后悬置支架的优化计算中,由于结构和受力状况的复杂性,我们采用实体单元与壳单元相结合的划分方法。 2.2确立优化设计流程 在利用Hyperworks软件做优化分析时,通常的流程是首先读入CAD模型,然后划分网格,添加边界条件,设置优化分析模型参数。优化分析模型一般是由目标函数、约束条件、优化设计变

7、量三个方面组成,借助于Hyperworks软件的OptiStruct模块,对于后悬置支架的轻量化设计,在现有的计算机条件下可以很方便的实现。首先,在轻量化分析过程中,一般选取优化设计变量为支架的体积的减少量,然后采用传统的拓扑优化方法,将总体的应变能作为目标函数。在本次后悬置支架的优化分析中,主要采用OptiStruct模块的拓扑优化和形状优化。首先,拓扑优化可以获得一个最佳的结构布局——即最佳的材料分布;然后在这个最优结构布局的基础上按照实际设计需求形成一个新的设计方案,并反馈到CAD软件中,形成新的CAD

8、模型,最后应用更仔细的形状优化工具,同时添加适合铸造的约束条件,得到最有效的细节设计方案。图(1)代表了该后悬置支架的简单优化设计流程,从最初的模型导入,以及之后的约束条件与目标函数的设定,同时包括制造工艺参数的设定,最后通过形状优化得到的最终设计方案。根据优化需求,将三维模型进行非安装部位的材料填充导入三维模型9图(1)拓扑与形状优化流程图  三、有限元模型建立和边界条件确定3.1有限元模型建立3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。