欢迎来到天天文库
浏览记录
ID:11266286
大小:1.55 MB
页数:65页
时间:2018-07-11
《软件设计师考前冲刺与考点分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、软件设计师http://www.educity.cn/jiaocheng/zg7.html软件设计师考前冲刺与考点分析第 2 章 计算机硬件基础知识1.1 考点脉络计算机硬件系统是软件运行的基础,掌握一些基本硬件的工作原理是软件技术提高的前提,所以硬件基础知识是软件设计师考试中的一个必考模块。在此科目中,涉及到的知识点非常多,但真正常考的却不多,本章将对考点脉络进行梳理,对重要知识点进行精讲,并辅以习题,以便考生加深印象。根据考试大纲,本章要求考生掌握以下几个方面的知识点。(1)数据的表示:数制及其转换、原码、反码、补码、移码、
2、浮点数、溢出、算术运算、逻辑运算、校验码。(2)计算机系统的组成、体系结构分类及特性:CPU、存储器的组成、性能和基本工作原理、常用I/O设备、通信设备的性能及基本工作原理、I/O接口的功能、类型和特性、CISC/RISC、流水线操作、多处理机、并行处理。(3)存储系统:虚拟存储器基本工作原理、多级存储体系、RAID类型和特性。(4)可靠性与系统性能评测基础知识:诊断与容错、系统可靠性分析评价、校验方法、计算机系统性能评测方法。从历年的考试情况来看,本章的考点主要集中以下方面。软件设计师http://www.educity.cn/j
3、iaocheng/zg7.html在数据的表示中,主要考浮点数运算、溢出、算术、逻辑运算。在计算机系统的组成与体系结构中,主要考查CPU的构成,常见寄存器的作用、计算机体系结构分类、指令系统基础、CISC与RISC、流水线操作的相关内容。在存储系统中,主要考查Cache存储器。在可靠性与系统性能评测基础知识中,主要考查系统可靠性分析和校验方法。1.2 数据的表示在数据的表示这个考点中,主要涉及到数制转换、数据编码、浮点数计算三个方面的内容,其中难度最高的是浮点数计算。1.2.1 考点精讲1.数制转换(1)R进制数转换成十进制
4、数R进制数转换成十进制数通常使用按权展开法。具体操作方式为:将R进制数的每一位数值用Rk形式表示,即幂的底数是R,指数为k,k与该位和小数点之间的距离有关。当该位位于小数点左边,k值是该位和小数点之间数码的个数,而当该位位于小数点右边,k值是负值,其绝对值是该位和小数点之间数码的个数加1。例如二进制数l0101.01的值可计算如下:l0101.01=1×24+1×22+1×20+1×软件设计师http://www.educity.cn/jiaocheng/zg7.html按照上面的表示法,即可计算出R进制数十进制的值。(2)十进制数
5、转换为R进制数最常用的是“除以R取余法”。例如将十进制数85转换为二进制数:2
6、85余12
7、4202
8、21 1 2
9、1002
10、5 1 2
11、2 0 1 1将所得的余数从低位到高位排列(1010101)2就是85的二进制数。(3)二进制数与八进制数、十六进制数之间的转换二进制转八进制:将每3个二进制数转换为八进制数;二进制转十六进制数:将每4个二进制数转换为八进制数;八进制转二进制:将每个八进制数转换为3位二进制数;十六进制转二进制:将每个十六进制数转换为4位二进制数。软件设计师
12、http://www.educity.cn/jiaocheng/zg7.html上面的转换都是以小数点作为计算数码个数的起点。八进制数和十六进制数转换可先转换为二进制数,然后再转换为目标进制。2.原码、反码、补码、移码在计算机中,数据编码方式可以有多种,最为常见的有原码、反码、补码、移码。一个正数的原码、补码、反码是相同的,负数则不同。(1)原码将最高位用做符号位(0表示正数,1表示负数),其余各位代表数值本身的绝对值的表示形式。这种方式是最容易理解的。例如,+1的原码是00000001,–1的原码是10000001。但是直接使用原
13、码在计算时却会有麻烦,比如(1)10+(–1)10 =0,如果直接使用原码则:(00000001)2+(10000001)2=(10000010)2这样计算的结果是–2,也就是说,使用原码直接参与计算可能会出现错误的结果。所以,原码的符号位不能直接参与计算,必须和其它位分开,这样会增加硬件的开销和复杂性。(2)反码正数的反码与原码相同。负数的反码符号位为1,其余各位为该数绝对值的原码按位取反。这个取反的过程使得这种编码称为“反码”。例如,–1的反码:11111110。同样对上面的加法,使用反码的结果是:软件设计师http://www
14、.educity.cn/jiaocheng/zg7.html(00000001)2+(11111110)2 =(11111111)2 这样的结果是负0,而在人们普遍的观念中,0是不分正负的。反码的符号位可以直接参与计算,而且减法也
此文档下载收益归作者所有