欢迎来到天天文库
浏览记录
ID:11108350
大小:140.50 KB
页数:4页
时间:2018-07-10
《激光拉曼光谱实验》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、激光拉曼光谱实验拉曼散射是印度科学家Raman在1928年发现的,拉曼光谱因之得名。光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。因这一重大发现,拉曼于1930年获诺贝尔奖。激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。如在化学方面应用于
2、有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。实验目的:1、掌握拉曼光谱仪的原理和使用方法;2、测四氯化碳的拉曼光谱,计算拉曼频移。实验重点:拉曼现象的产生原理及拉曼频移的计算实验难点:光路的调节实验原理:[仪器结构及原理]1、仪器的结构LRS-II激光拉曼/荧光光谱仪的总体结构如图12-4-1所示。2、单色仪单色仪的光学结构如图12-4-2所示。S1为入射狭缝,M1为准直镜,G为平面衍射光栅,衍射光束经成像物
3、镜M2汇聚,经平面镜M3反射直接照射到出射狭缝S2上,在S2外侧有一光电倍增管PMT,当光谱仪的光栅转动时,光谱信号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。3、激光器本实验采用50mW半导体激光器,该激光器输出的激光为偏振光。其操作步骤参照半导体激光器说明书。4、外光路系统外光路系统主要由激发光源(半导体激光器)、五维可调样品支架S、偏振组件P1和P2以及聚光透镜C1和C2等组成(见图12-4-3)。激光器射出的激光束被反射镜R反向后,照射到样品上。为了得到较强的激发光,采用一聚光镜C14使激光
4、聚焦,使在样品容器的中央部位形成激光的束腰。为了增强效果,在容器的另一侧放一凹面反射镜M2。凹面镜M2可使样品在该侧的散射光返回,最后由聚光镜C2把散射光会聚到单色仪的入射狭缝上。调节好外光路是获得拉曼光谱的关键,首先应使外光路与单色仪的内光路共轴。一般情况下,它们都已调好并被固定在一个钢性台架上。可调的主要是激光照射在样品上的束腰,束腰应恰好被成像在单色仪的狭缝上。是否处于最佳成像位置,可通过单色仪扫描出的某条拉曼谱线的强弱来判断。5、信号处理部分:光电倍增管将光信号变成电信号并进行信号放大,最后送入电脑显示系统,在电脑上显示出拉曼光谱。[拉曼光谱的特性]:频率为υ
5、的单色光入射到透明的气体、液体或固体材料上而产生光散射时,散射光中除了存在入射光频率υ外,还观察到频率为υ±△υ的新成分,这种频率发生改变的现象就被称为拉曼效应。υ即为瑞利散射,频率υ+△υ称为拉曼散射的斯托克斯线,频率为υ-△υ的称为反斯托克斯线。△υ通常称为拉曼频移,多用散射光波长的倒数表示,计算公式为(7.14.1)式中,λ和λ0分别为散射光和入射光的波长。△υ的单位为cm-1。拉曼谱线的频率虽然随着入射光频率而变化,但拉曼光的频率和瑞利散射光的频率之差却不随入射光频率而变化,而与样品分子的振动转动能级有关。拉曼谱线的强度与入射光的强度和样品分子的浓度成正比:式
6、中φk—在垂直入射光束方向上通过聚焦镜所收集的喇曼散射光的通量(W);φ0—入射光照射到样品上的光通量(W);Sk—拉曼散射系数,约等于10-28~10-29mol/sr;N—单位体积内的分子数;H—样品的有效体积;L—考虑折射率和样品内场效应等因素影响的系数;—拉曼光束在聚焦透镜方向上的半角度。利用拉曼效应及拉曼散射光与样品分子的上述关系,可对物质分子的结构和浓度进行分析和研究。[拉曼散射原理]样品分子被入射光照射时,光电场使分子中的电荷分布周期性变化,产生一个交变的分子偶极矩。偶极矩随时间变化二次辐射电磁波即形成光散射现象。单位体积内分子偶极矩的矢量和称为分子的极
7、化强度,用P表示。极化强度正比于入射电场(7.14.2)被称为分子极化率。在一级近似中被认为是一个常数,则P和E的方向相同。设入射光为频率υ的单色光,其电场强度E=E0cos2πυt,则(7.14.3)如果认为分子极化率由于各原子间的振动而与振动有关,则它应由两部分组成:一部分是一个常数0,另一部分是以各种简正频率为代表的分子振动对贡献的总和,这些简正频率的贡献应随时间做周期性变化,所以4(7.14.4)式中,表示第n个简正振动频率,可以是分子的振动频率或转动频率,也可以是晶体中晶格的振动频率或固体中声子散射频率。因此(7.14.5)上式第一项产生的
此文档下载收益归作者所有