欢迎来到天天文库
浏览记录
ID:11055910
大小:161.00 KB
页数:7页
时间:2018-07-09
《五年级上册多边形面积的计算》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、不规则图形面积的计算(一) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面
2、积。 例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积. 例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 例4如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积. 例5如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘 例6如右图,已知:S△ABC=1, 例7如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG
3、为5厘米,求它的宽DE等于多少厘米? 例8如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积. 例9如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等. 习题一 一、填空题(求下列各图中阴影部分的面积): 二、解答题: 1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。 2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积. 3.如右图,正方形A
4、BCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。 4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积. 5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积. 6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?
此文档下载收益归作者所有