资源描述:
《初中数学几何经典题:测试题训练》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、初中数学几何经典题1、三角形ABC中,AD为中线,P为AD上任意一点,过p的直线交AB于M.交ac于N,若AN=AM,求证PM/PN=AC/AB1题图2题图2、在三角形BCD中,BC=BD,延长BC至A,延长BD至E,使AC=BE,连接AD,AE,AD=AE,求BCD为等边4、已知三角形ABE中C、D分别为AB、BE上的点,且AD=AE,三角形BCD为等边三角形,求证BC+DE=AC5、已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC与F,求证AF=EF6、在△ABC中,
2、D是BC边中点,O是AD上一点,BO,CO的延长线分别交AC,AB于E,F求证:EF平行BC。7、已知:在△ABC和△A'B'C'中,AB=A'B',AC=A'C'.AD,A'D'分别是△ABC和△A'B'C'的中线,且AD=A'D'.8、四边形ABCD为菱形,E,F为AB,BC的中点,EP⊥CD,∠BAD=110º,求∠FPC的度数9、已知:E是正方形ABCD内的一点,且∠DAE=∠ADE=15°,求证:△EBC是等边三角形10、在三角形ABC中,经过BC的中点M,有垂直相交于M的两条直线,它们与AB,AC分别
3、交于D、E,求证,BD+CE>DE11、AB是等腰直角三角形ABC的斜边,若点M在边AC上,点N在边BC上,沿直线MN把△MCN翻折,使点C落在AB上设其落点(1).如图一,当是AB的中点时,求证:PA/PB=CM/CN(2).如图二当P不是AB中点时,结论PA/PB=CM/CN是否成立?若成立,请给出证明12、三角形ABC中,BC=5,M和I分别是三角形ABC的重心和内心,若MI平行于BC,则AB+AC的值是多少?14、已知:D.E位△ABC内的两点求证:AB+AC>BD+DE+EC15、在三角形ABC中,BD
4、,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?17、三角形中线分别为91215求三角形面积18、在△ABC中∠A=90°,AD⊥BC于D,M是AD的中点,延长BM交AC于E,过E作EF⊥BC于F。求证:EF²=AE*CE19、已知E为平行四边形ABCD的边BC上的任一点,DE延长线交AB延长线与F,求证S△ABE=S△CEF。20、等腰直角三角形,角A为90°,D,E两点为斜边上的动点,角DAE=45°,当D合B重合或E和C重合时,线段DE的
5、长度等于BD+EC当不重合时,DE6、MP'P相似三角形ANP得:MP'/AN=MP/PN而AN=AM所以:MP'/AM=MP/PN所以:AC/AB=MP/PN2.证明:过点A作CD的平行线交BE的延长线于F点。则∠BDC=∠F=∠BCD=∠A,即∠A=∠F.又因为:四边形AFDC是梯形所以:AC=DF=FE+DE而AC=BD+DE所以:BD=FE又因为:AD=AE,∠BDA=∠FEA所以:三角形ABD和三角形AFE全等所以:∠B=∠F所以:∠B=∠BCD=∠BDC=60°所以:三角形BCD是等边三角形。4.证明:过D点作BE的垂线DF,交AB于F点
7、,过A点作BE的垂线AH,H是垂足,再过F点作AH的垂线FG,G是垂足。则:四边形DHGF是矩形,有FG=DH.而由△ADE是等腰三角形得知DH=HE,所以:FG=(1/2)DE.又由于角B=60°,所以:∠BAH=30°所以:FG=(1/2)AF所以:AF=DE而在直角△BDF中,由于∠B=∠BDC=60°所以:∠CDF=∠CFD=30°所以:CF=CD=BC所以:BC+DE=CF+AF即:BC+DE=AC5.证明:如图,连接EC,取EC的中点G,AE的中点H,连接DG,HG则:GH=DG所以:角1=∠2,而∠
8、1=∠4,∠2=∠3=∠5所以;∠4=∠5所以:AF=EF.6.证明:分别过B,C两点作AD的平行线分别交CF,BE的延长线于M,N两点。则:四边形MBCN是平行四边形。由MB‖AO‖CN,得:OF/FM=OA/BM,OE/EN=OA/CN.(相似三角形对应边成比例)而BM=CN所以:OF/FM=OE/EN所以:MN‖EF而MN‖BC所以:EF‖BC.7.求证:△ABC≌