基于anays见面有限元论文大学论文.doc

基于anays见面有限元论文大学论文.doc

ID:10988578

大小:615.33 KB

页数:16页

时间:2018-07-09

基于anays见面有限元论文大学论文.doc_第1页
基于anays见面有限元论文大学论文.doc_第2页
基于anays见面有限元论文大学论文.doc_第3页
基于anays见面有限元论文大学论文.doc_第4页
基于anays见面有限元论文大学论文.doc_第5页
资源描述:

《基于anays见面有限元论文大学论文.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、摘 要:采用三维弹塑性有限元方法对新坑水库浆砌石双曲拱坝在多种荷载组合作用下的坝体应力及变形进行了多种工况的计算。结果表明,坝体的应力及变形均满足承载要求,但对本工程存在的问题从结构承载的角度分析应进行加固处理,其结论和成果对于其他同类拱坝结构分析具有参考价值。  关键词:双曲拱坝,结构建模、网格划分、加载;有限元分析有限元方法发展到今天。已经成为一门相当复杂的实用工程技术。有限元分析的最终目的是还原一个实际工程系统的数学行为特征。即分析必须针对一个物理原型准确的数学模型。模型包括所有节点、单元、材料属性、实常数、边界条件以及其他用来表现这

2、个物理系统的特征。ANSYS(analysis system)是一种融结构、热、流体、电磁和声学于一体的大型CANE通用有限元分析软件,可广泛应用于航空航天、机械、汽车交通、电子等一般工业及科学研究领域。该软件提供了不断改进的功能清单,具体包括:结构高度非线性分析、电磁分析、计算流体力学分析、设计优化、接触分析、自适应网格划分及利用ANSYS参数设计语言扩展宏命令功能。ANSYS的学习、应用是一个系统、复杂的工程。由于它涉及到多方面的知识,所以在学习ANSYS的过程中一定要对ANSYS所涉及到的一些理论知识有一个大概的了解,以加深对ANSY

3、S的理解。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结

4、论等,都可以从三大基本规律推导出来。在各向同性线性弹性力学中,为了求得应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程和边界条件的表达式。直角坐标系下的弹性力学的基本方程为平衡微分方程:(1)几何方程:(2)物理方程:(3)(1)式中的σx、σy、σz、τyz=τzy、τxz=τzx、τxy=τyx为应力分量,X、Y、Z为单位体积的体力在三个坐标方向的分量;(2)式中的u、v、w为位移

5、矢量的三个分量(简称位移分量),εx、εy、εz、γyz、γxz、γxy为应变分量;(3)式中的E和v分别表示杨氏弹性模量和泊松比。主要解法式(1)、(2)、(3)中有15个变量,15个方程,在给定了边界条件后,从理论上讲应能求解。但由(2)、(3)式可见,应变分量、应力分量和位移分量之间不是彼此独立的,因此求解弹性力学问题通常有两条途径。其一是以位移作为基本变量,归结为在给定的边界条件下求解以位移表示的平衡微分方程,这个方程可以从(1)、(2)、(3)式中消去应变分量和应力分量而得到。其二是以应力作为基本变量,应力分量除了要满足平衡微分方

6、程和静力边界条件外,为保证物体变形的连续性,对应的应变分量还须满足相容方程:在弹性力学中,为克服求解偏微分方程(或方程组)的困难,通常采用试凑法,即根据物体形状的几何特性和受载情况,去试凑位移分量或应力分量;由弹性力学解的唯一性定理,只要所试凑的量满足全部方程和全部边界条件,即为问题的精确解。从数学观点来看,弹性力学方程的定解问题可变为求泛函的极值问题。例如,对于用位移作为基本变量求解的问题,又可以归结为求解变分方程:δП1=0 (7)П1是物体的总势能,它是一切满足位移边界条件的位移的泛函。对于稳定平衡状态,精确的位移将使总势能П1取最小

7、值的称为最小势能原理。又如对于用应力作为基本变量求解的问题,可归结为求解变分方程:δП2=0 (8)П2为物体的总余能,它是一切满足平衡微分方程和静力边界条件的应力分量的泛函。精确的应力分量将使总余能П2取最小值的称为最小余能原理。(7)式等价于用位移表示的平衡微分方程和静力边界条件,而(8)式则等价于用应力表示的相容方程。在求问题的近似解时,上述泛函的极值问题又进而变为函数的极值问题,最后归结为求解线性非齐次代数方程组。还有各种所谓的广义变分原理,其中最一般的是广义势能原理和广义余能原理,它们等价于弹性力学的全部基本方程和边界条件。但和总

8、势能П1和总余能П2不同,广义势能和广义余能作为应力分量、应变分量和位移分量的泛函,对于精确解,也只取非极值的驻值。由于弹性力学的基本方程是在弹性力学的五条基本假设下通过严密的数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。