欢迎来到天天文库
浏览记录
ID:10947643
大小:26.50 KB
页数:3页
时间:2018-07-09
《简论解决物理问题的模型思维方法.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、简论解决物理问题的模型思维方法 论文摘要 物理模型思维在中学的研究和学习中是物理学习、分析处理和解决物理问题的思维方法。通过简化和纯化研究对象及其所处的状态和发展变化的过程,大大的方便了对物理问题的处理。在许多实际的物理问题中,有些研究对象以及它们所处的状态和发展变化的过程都比较接近物理模型,更拓宽了物理模型的应用范围。 论文关键词 物理问题 模型思维 模型分类 模型转换 高中阶段学生解决问题存在的困难就在于不能随着物理情景的变化而建立恰当的物理模型,从而寻找适合的物理规律。学生由于思维定势,拿到实际题目后不能从审题中确定准确
2、的物理图景,建立恰当的物理模型,而是想当然的和以往的题目做比较,熟悉的就套公式,不熟悉的就无从下手,长期就导致学生学习物理没有兴趣,不知来龙去脉,更谈不上从解题过程中巩固基础知识,培养各种思维能力的目的。因此在高中物理教学中一定要重视物理模型思维方法的培养。 一、模型的分类 物理模型是一个理想化的形式,可以从不同的角度有不同的区别,为了便于理解和应用,根据中学物理教学和教学功能模型的特点,可以分为三类:对象模型,条件模型,过程模型。 (一)对象模型 在具体的物质组成的地方使用,被称为代表实体对象系统的对象模型。这种类型的模型
3、是最常见的,在高中物理中刚体、杠杆,轻弹簧,质子、单摆、弹簧振子、分子模型,绝缘材料、黑体、理想导体、绝缘体、理想电表、纯电阻、无限长螺线管,薄透镜原子的核结构模型等。 (二)过程模型 具体的物理过程理想化,抽象的纯物理过程,被称为过程模型。事情的性质发生变化的各种路径是极其复杂的,在物理学的研究,不可能面面俱到。主要是区分其主要因素和次要因素,然后忽略次要因素,在运动的过程中获得变化结果,以便只留下的主要因素。理想的模型,如匀速直线运动,匀变速直线运动等运动过程,都是以突出某一方面的主要特点,忽略一些二次加工后的过程而抽象成为
4、理想的过程。这些都是一个过程模型。 (三)状态模型(也称为有条件的模型) 研究的外部条件是处于理想状态中,排除在外部条件的次要因素的干扰是研究运动的本质特征,突出的外部条件,是我们之所以建立物理模型的最重要因素。因此而建立的模型被称为状态模型。如光滑平面,灯杆,灯绳,均匀介质,均匀的电场,等等,都属于有条件的模型。有条件的模型的建立,是为了简化问题的复杂性,从而在一种理想的运动状态中得出它的运动模式。3 在教学中根据中学物理中的大量实际问题的诸多特点而建立的上述三种模式,事实上,在相同的物理问题,往往需要创建多个模型,多种模型
5、往往利用集成的物理问题的研究不可分离的模型,我们不能仅仅满足对知识的学习,应基于物理的思维方式,注意方法的渗透,自觉学习,注意加强意识的模型,选择适当的模式来解决物理问题。 二、模式转型 理想的模式是不仅物理学赖以建立的基本思路,而且在解决实际问题的重要途径和方法用于物理。物理模型是有限的,但客观事物是无限的,尤其是高中物理教学,由于学生所学的物理知识和数学能力的限制,约束,许多物理模型不能直接抽象为学生熟悉与模型。这就需要我们引导学生某些类型的操作,他们是熟悉另外一个陌生的模型的替代模型,只要在该模型的前提下,同样的效果转换,
6、往往使问题变得更简单,更具体,更生动,更容易掌握。 (一)变换研究对象进行模型转换 一个物理问题中总会涉及到很多物体,解决问题时首先应明确研究对象,根据题目的要求选择恰当的研究对象对于解题过程是否顺利起着决定性的作用。有时研究对象选单个物体,有时选多个相互作用的物体组成的系统,还有时在同一个问题中须根据研究过程情景的变化灵活变换研究对象来解决问题。 (二)认真分析运动过程进行模型转换 一个物理问题的解决,很重要的方面是物理过程和物理状态的分析,只有深刻透析过程中的物理性质的分析,可以发现其所按照规律,以便选择适当的物理公式,
7、解决未知的参数和未知量,以达到解决问题的目的。 (三)恰当选择参考系进行模型转换可达事半功倍的效果 在研究物体的运动之前必须首先选定参考系,习惯上大家都选相对于地面不动的物体为参考系。但是,有时这样选择后却使得问题特别复杂而难以解决。因此为了研究的方便,也可以视问题的具体情况巧妙的选用其他物体做参考系(如两车的追及问题、同时开始的自由落体问题等),从而可简化求解过程。 (四)利用等效思维转换模型 物理等效思维意味着从同等效力的研究和学习的物理现象和物理过程的思维方式之间的事情,并分析物理问题和运用解决物理问题的思维形式。使用
8、物理问题简化为相当于实际复杂的物理现象和物理过程或物理问题的思维,并转换为等效的理想和简单的物理现象,物理过程或物理问题来研究和处理。 (五)适当运用逆向思维建立模型,化繁为简,提高解题能力 逆向思维是一种与传统的、逻辑的或群体的
此文档下载收益归作者所有