欢迎来到天天文库
浏览记录
ID:10861346
大小:32.20 KB
页数:27页
时间:2018-07-08
《2018最新中考数学试题含答案与解析全套》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2018最新中考数学试题含答案与解析全套一、选择题(本题共10小题,每小题3分,共30分)1.2018的相反数是( )A.2018B.﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2.计算﹣3a•(2b),正确的结果是( )A.﹣6abB.6abC.﹣abD.ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.
2、点睛:此题考查单项式的除法,关键是根据法则计算.3.如图所示的几何体的左视图是( )A.B.C.D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4.某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)101112131415人数(人)154321则这一天16名工人生产件数的众数是( )A.5件B.11件C.12件D.15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就
3、可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )A.20°B.35°C.40°D.70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解
4、:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是(
5、 )A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖
6、区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.B.C.D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗
7、漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( )A.AE=EFB.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的
8、外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故
此文档下载收益归作者所有