再论“空间句法”论文

再论“空间句法”论文

ID:10750449

大小:75.50 KB

页数:13页

时间:2018-07-08

再论“空间句法”论文_第1页
再论“空间句法”论文_第2页
再论“空间句法”论文_第3页
再论“空间句法”论文_第4页
再论“空间句法”论文_第5页
资源描述:

《再论“空间句法”论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、再论“空间句法”论文.freelan改进了计算方法,用相对不对称值(relativeasymmetry)来将其标准化,公式是RA=2(MD-1)/(n-2)。5其中的n为节点总数.为与实际意义正相关,将RA取倒数,称为集成度。后来又用RRA来进一步标准化集成度,以便比较不同大小的空间系统。RRA=RA/Dn.6对应于整体深度值和局部深度值,也同样存在着整体集成度和局部集成度。整体集成度表示节点与整个系统内所有节点联系的紧密程度;而局部集成度是表示,某节点与其附近几步内的节点间联系的紧密程度,通常计算三步或十步范

2、围,称为“半径-3集成度”或“半径-10集成度”。(5)可理解度(intelligibility)。上述连接值、控制值和局部集成度,是描述局部层次上的结构特征的;而整体集成度是描述整体层次上的结构特征的。可理解度用来描述这种局部变量与整体变量之间的相关度。希列尔指出,无论对城市还是建筑空间,我们都很难原地立刻体验它,必须通过在系统中运动地观察,才能一部分一部分地逐渐建立起整个空间系统的图景。可理解度就是衡量从一个空间所看到的局部空间结构,是否有助于建立起整个空间系统的图景,即能否作为其看不到的整个空间结构的引导

3、。所以,如果空间系统中连接值高的空间,其集成度也高,那么,这就是一个可理解性好的空间系统。以上这些变量定量地描述了节点之间,以及节点与整个结构之间的关系,或者定量描述了整个结构的特征。此外,在具体的构形分析中,为说明特定问题,还会根据上述五个基本变量导出很多参数,在此就不一一列出了。2.3几何格网的构形分析如果将平面图形用规则的细小格网来近似表示,其中的每个小格子代表一个节点,格子间的相邻关系表示连接,由此便可计算出上述各种变量。例如,用格子表示的仿西方古典建筑的立面构形,格子填充色的深浅代表集成度的分布,深色

4、格子代表较高的集成度。可以看出集成度最高之处位于中央上部,并沿着中柱延伸至底平面。把这个立面识别为几个基本几何形的组合,然后分别计算每部分的集成度,并由此填充深浅颜色。在这里,又可发现其集成度分布呈水平状态。希列尔指出,这种由分析所揭示的中央集中的垂直结构和线形的水平结构,可能是跨文化的各种古典建筑立面中,所创造的最普遍的形式主题(Hillier,1996,123)。希列尔用这种细小格网的构形分析方法,对各种平面图形进行了解释;还定量地重新定义了对称、均衡等几何现象。若将规则格网稍加变化,阻隔某些格子之间的联系

5、,还可发现几何构形的一些普遍规律,希列尔将这一过程称为“障碍操作”试验。例如,各网格深度值的计算结果,可以发现四大原理(Hillier,1996,305):(1)中心性原理。阻隔条放在中间比放在边缘,会导致更大的总深度值。(2)延长性原理。分隔条越长,总深度值越大。(3)邻接性原理。相互邻接的分隔条,会比互不邻接的分隔条,导致更大的总深度值。(4)直线性原理。直线相接的分隔条,会比盘绕的分隔条,导致更大的总深度值。这四大原理是局部改变影响整个构形的普遍规律。填塞或删除某些格子也遵从这四大原理,只是删除格子的规律

6、与其总深度值的变化方向相反。这些规律对室内空间安排和开放空间配置等实际设计问题,有一定的启发和指导意义。3.实际空间的构形分析方法构形分析首先要把空间系统转化为节点及其相互连接组成的关系图解,其中,每个节点代表空间系统的一个组成单元。这种将整个空间系统划分为各组成单元的过程称为空间分割。前面将平面图形分割为细小格网进行构形分析,完全是理想状态的,是为了揭示构形的一些客观规律;若将真实的复杂空间系统,划分为大小相等的格网来分析,则没有实际意义8.人们主要是以运动的方式,通过视觉体验才建立起实际空间的构形。基于这种

7、认识,空间句法通过基于可见性的空间知觉分析,形成了多种空间分割方法,现概括为如下三类。3.1三种基本的空间分割方法从认知角度看,空间可分为大尺度空间与小尺度空间。大尺度空间就是超过个体的定点感知能力,从一个固定点不能完全感知的空间;而小尺度空间则是可从一点感知的。人们通过对很多小尺度空间的感知,才逐渐形成对大尺度空间的理解(江斌,2002,41)。复杂的城市和建筑空间可看成大尺度空间,在空间句法中,将其分割为小尺度空间最基本的三种方法,就是凸状、轴线和视区。3.1.1凸状凸状本是个数学概念。连接空间中任意两点的

8、直线,皆处于该空间中,则该空间就是凸状。因此,凸状是“不包含凹的部分”的小尺度空间。从认知意义来说,凸状空间中的每个点都能看到整个凸状空间。这表明,处于同一凸状空间的所有人都能彼此互视,从而达到充分而稳定的了解和互动,所以凸状空间还表达了人们相对静止地使用和聚集状态。空间句法规定,用最少且最大的凸状覆盖整个空间系统,然后把每个凸状当作一个节点,根据它们之间的连接关系,便可转化为前述关系

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。