欢迎来到天天文库
浏览记录
ID:10668800
大小:50.50 KB
页数:3页
时间:2018-07-07
《空气源热泵冷热水机组全年运行工况的模拟与分析论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、空气源热泵冷热水机组全年运行工况的模拟与分析论文程卫红姚杨马最良摘要:对机组的空气侧换热量、水侧换热量、压缩机轴功率和供热性能系数等参数进行综合分析,寻求对空气源热泵冷热水机组结霜特性影响最小的空气侧换热器的结构参数。用变化后的结构参数结合夏季运行工况,其空气侧换热系数、管壁温度、空气侧压降也有所改善。将模拟结果与实验数据进行了比较,两者吻合很好,进一步验证了所建模型的可靠性。关键词:空气源热泵冷热水机组动态模型稳态模型结霜1空气源热泵冷热水机组模型建立空气源热泵冷热水机组由压缩机、空气侧换热器、水侧换热器、节流机构等设备组成。在质量守恒、能量守恒、动量守恒
2、的基础上,利用空气源热泵冷热水机组的四大部件的数学模型,并利用制冷剂在各部件的进出口状态参数把所建的四个部件模型耦合在一起,就构成了空气源热泵冷热水机组冬、夏季工况的模型。耦合过程中的质量守恒是指各部件中的制冷剂质量流量相等.freelm,分液路数10,管间距为27.4mm,翅片间距分别为3.5mm和4mm时,与采用原始的结构参数(管径为10mm,分液路数10,管间距为25.4mm,翅片间距为2mm)相比,分析空气源热泵冷热水机组结霜工况下,机组性能参数随时间的变化。图1至图4是机组空气侧换热量、水侧换热量、压缩机轴功率和供热性能系数随时间的变化。由图可见,
3、水侧换热量、压缩机轴功率和供热性能系数在翅片间距取3.5mm时优于翅片间距取4mm时。图1空气侧换热器换热量随时间的变化图2水侧换热器换热量随时间的变化图3压缩机轴功率随时间的变化图4供热性能系数随时间的变化采用原始的结构参数与变化后的结构参数对空气源热泵冷热水机组各性能参数的影响作了对比,从而得出结论:结构参数变化后,机组运行到35分钟时,压缩机轴功率从72.36km),机组结霜工况性能改善明显。2.2工况C(-4℃,75%)空气侧换热器结构参数变化后值:管径为8mm,分液路数10,管间距为27.4mm时,翅片间距分别取2.5mm和3mm时,与采用原始的结
4、构参数相比,分析空气源热泵冷热水机组结霜工况下,机组性能参数随时间的变化。图5至图8是机组空气侧换热量、水侧换热量、压缩机轴功率和供热性能系数随时间的变化。由图可见,空气侧换热量、水侧换热量、压缩机轴功率和供热性能系数在翅片间距取2.5mm时明显优于翅片间距取3mm时。采用原始的结构参数与变化后的结构参数对机组各性能参数的影响作了对比,从而得出结论:结构参数变化后,机组运行时间延长,供热性能系数从4.1172增加到4.1267,增加了0.27%;压缩机轴功率从59.1k),机组结霜工况的性能改善明显。图5空气侧换热器换热量随时间的变化图6水侧换热器换热量随时
5、间的变化图7压缩机轴功率随时间的变化图8供热性能系数随时间的变化3典型夏季工况的模拟与分析通过对结霜工况B~C,空气侧换热器结构参数对空气源热泵冷热水机组结霜特性影响的计算和研究,得出结论:采用变化后的结构参数,对机组性能尤其是减少结霜、延长机组运行时间有明显效果。机组夏季按制冷工况运行,用变化后的换热器结构参数在夏季工况对机组运行是否产生影响,下面分别对工况B、C所对应的夏季工况D、E用变化后结构参数对机组进行计算和验证。3.1工况D(31.6℃,86%)空气源热泵冷热水机组夏季运行时,空气侧换热器作为冷凝器使用。空气侧换热器是以空气作为冷却介质,靠空气的
6、温升带走冷凝热量。夏季工况机组运行时,随着时间的变化,机组各性能参数基本不改变,因此,夏季工况采用稳态模型进行计算。图9至图10分别为夏季工况下,空气侧换热器在采用变化前后的结构参数,空气侧换热系数、管壁温度沿管长的变化。可以看出,变化后的空气侧换热系数明显增大,空气侧管壁温度提高。这是因为随着翅片间距的增大,使流过换热器的空气产生扰动变化,空气侧换热能力增强,冷凝热量迅速传递给空气,降低了空气与管壁的温差。图9空气侧换热系数沿管长的变化图10空气侧管壁温度沿管长的变化采用变化后的结构参数,对于夏季工况D,制冷性能系数为4.59,制冷量为339.115km,
7、管径取8mm,分液路数取10,管间距取27.4mm;处于一般结霜区的上海、杭州所对应的冬季工况C(-4℃,75%),得出结构参数:翅片间距取2.5mm,管径取8mm,分液路数取10,管间距取27.4mm,结合全年运行情况,机组处于较好的运行性能。因此对于不同地区应用的空气源热泵冷热水机组,应根据结霜情况的不同,配置不同结构参数的空气侧换热器。
此文档下载收益归作者所有