欢迎来到天天文库
浏览记录
ID:10465729
大小:55.50 KB
页数:5页
时间:2018-07-06
《生物质热解研究现状与展望论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、生物质热解研究现状与展望论文摘要:主要论述了生物质热解技术的原理、热解反应过程、热解工艺类型及影响因素。在分析国内外发展现状的基础上,提出生物质热解技术主要存在的不足,对生物质热解技术的发展前景进行了展望。关键词:生物质热解;研究进展;发展现状;展望0引言通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术.freelm以下时,热解过程受反应动力学速率控制,而当粒径大于1mm时,热解过程中还同时受
2、到传热和传质现象的控制。大颗粒物料比小颗粒传热能力差,颗粒内部升温要迟缓,即大颗粒物料在低温区的停留时间要长,从而对热解产物的分布造成了影响。随着颗粒的粒径的增大,热解产物中固相炭的产量增大。从获得更多生物油角度看,生物质颗粒的尺寸以小为宜,但这无疑会导致破碎和筛选有难度,实际上只要选用小于1mm的生物质颗粒就可以了。2.2.3催化剂的影响有关研究人员用不同的催化剂掺入生物质热解试验中,不同的催化剂起到不同的效果。如:碱金属碳酸盐能提高气体、碳的产量,降低生物油的产量,而且能促进原料中氢释放,使空气产物中的H2/CO增大;K+能促进CO、CO2的生成,但
3、几乎不影响H2O的生成;NaCl能促进纤维素反应中H2O、CO、CO2的生成;加氢裂化能增加生物油的产量,并使油的分子量变小。另外,原料反应得到的产物在反应器内停留时间、反应产出气体的冷却速度、原料颗粒尺寸等,对产出的炭、可燃性气体、生物油(降温由气体析出)的产量比例也有一定影响5。2.2.4滞留时间滞留时间在生物质热解反应中有固相滞留时间和气相滞留时间之分。固相滞留时间越短,热解的固态产物所占的比例就越小,总的产物量越大,热解越完全。在给定的温度和升温速率的条件下,固相滞留时间越短,反应的转化产物中的固相产物就越少,气相产物的量就越大。气相滞留期时间一
4、般并不影响生物质的一次裂解反应过程,而只影响到液态产物中的生物油发生的二次裂解反应的进程。当生物质热解产物中的一次产物进入围绕生物质颗粒的气相中,生物油就会发生进一步的裂化反应,在炽热的反应器中,气相滞留时间越长,生物油的二次裂解发生的就越严重,二次裂解反应增多,放出H2、CH4、CO等,导致液态产物迅速减少,气体产物增加。所以,为获得最大生物油产量,应缩短气相滞留期,使挥发产物迅速离开反应器,减少焦油二次裂解的时间3~5。2.2.5压力压力的大小将影响气相滞留期,从而影响二次裂解,最终影响热解产物产量的分布。随着压力的提高,生物质的活化能减小,且减小的
5、趋势渐缓。在较高的压力下,生物质的热解速率有明显的提高,反应也更激烈,而且挥发产物的滞留期增加,二次裂解较大;而在低的压力下,挥发物可以迅速从颗粒表面离开,从而限制了二次裂解的发生,增加了生物油产量14,15。2.2.6升温速率升温速率对热解的影响很大。一般对热解有正反两方面的影响。升温速率增加,物料颗粒达到热解所需温度的相应时间变短,有利于热解;但同时颗粒内外的温差变大,由于传热滞后效应会影响内部热解的进行。随着升温速率的增大,温度滞后就越严重,热重曲线和差热曲线的分辨力就会越低,物料失重和失重速率曲线均向高温区移动。热解速率和热解特征温度(热解起始温
6、度、热解速率最快的温度、热解终止温度)均随升温速率的提高呈线形增长。在一定热解时间内,慢加热速率会延长热解物料在低温区的停留时间,促进纤维素和木质素的脱水和炭化反应,导致炭产率增加。气体和生物油的产率在很大程度上取决于挥发物生成的一次反应和生物油的二次裂解反应的竞争结果,较快的加热方式使得挥发分在高温环境下的滞留时间增加,促进了二次裂解的进行,使得生物油产率下降、燃气产率提高16~18。3热解技术研究现状3.1国内研究现状与欧美一些国家相比,亚洲及我国对生物质热解的研究起步较晚。近十几年来,广州能源研究所生物质能研究中心、浙江大学、东北林业大学等单位做了
7、一些这方面的工作。广州能源研究所生物质能研究中心,目前研究方向重点为生物质热化学转化过程的机理及热化学利用技术。其研究内容为:(1)高能环境下的热解机理研究:等离子体热解气化、超临界热解等;(2)气化新工艺研究:高温气化、富氧气化、水蒸汽气化等;(3)气化技术系统集成及应用:新型气化装置、气化发电系统等;(4)生物质气化燃烧与直接燃烧:气化燃烧技术、热解燃烧技术、直接燃烧等。浙江大学着眼于流化床技术在生物质清洁能源规模化利用上显示出的巨大潜在优势,在上世纪末成功开发了以流化床技术为基础的生物质热裂解液化反应器,并在先期成功试验的基础上,针对已有的生物质热
8、裂解液化工艺中能源利用率不高以及液体产物不分级等缺点,采用独特的设计方案研发了生
此文档下载收益归作者所有