多指标综合评价方法及权重系数的选择论文

多指标综合评价方法及权重系数的选择论文

ID:10438881

大小:80.00 KB

页数:12页

时间:2018-07-06

多指标综合评价方法及权重系数的选择论文_第1页
多指标综合评价方法及权重系数的选择论文_第2页
多指标综合评价方法及权重系数的选择论文_第3页
多指标综合评价方法及权重系数的选择论文_第4页
多指标综合评价方法及权重系数的选择论文_第5页
资源描述:

《多指标综合评价方法及权重系数的选择论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、多指标综合评价方法及权重系数的选择论文王晖,陈丽,陈垦,薛漫清,梁庆【摘要】由于计算机的发展及一些相关领域的不断深入研究,综合评价方法得到了不断的发展和改进。而指标权重系数的确定方法作为综合评价中的重中之重,近几年来也取得了一些新的进展。本文对多指标评价方法和权重系数的选择进行概括介绍。【关键词】多指标综合评价;评价方法;权重系数;选择基金项目:广东药学院引进人才科研启动基金资助项目(2005ZYX12)、广州市科技计划项目(2007J1-C0281)、广东省科技计划项目(2007A060305006)综合评

2、价是利用数学方法(包括数理统计方法)对一个复杂系统的多个指标信息进行加工和提炼,以求得其优劣等级的一种评价方法。本文就近年来国内外有关多指标综合评价及权重系数选择的方法进行综述.freel项被评价对象,有n个评价指标,则评价对象的指标数据库为Kj=(K1j,K2j,……,Knj),j=1,2,……,m。设最优数据为K0=(K1、K2、……Kn)。最优单位K0中各数据的确定如下:高优指标,取所有m个单位中该项评价指标最大者;低优指标,取所有m个单位中该项评价指标最小者。各单位与最优单位的加权相对差距和为:D=∑

3、nj=1i式中i为所有单位的第i项指标数值的中位数。结果按D值大小进行排序,D值越小,该单位越接近最优单位。该方法直观、易懂、计算简便,可以直接用原始数据进行计算,避免因其它运算而引起的信息损失。该法考虑了各评价对象在全体评价对象中的位置,避免了各被评价对象之间因差距较小,不易排序的困难。1.3主成分分析法该法是将多个指标化为少数几个综合指标,而保持原指标大量信息的一种统计方法。其计算步骤简述如下[4]:对原始数据进行标准化变换并求相关系数矩阵Rm×n→求出R的特征根λi及相应的标准正交化特征向量ai→计算特

4、征根λi的信息贡献率,确定主成分的个数→将经过标准化后的样本指标值代入主成分,计算每个样本的主成分得分。应用本法时,当指标数越多,且各指标间相关程度越密切,即相应的主成分个数越少,本法越优越;对于定性指标,应先进行定量化;当指标数较少时,可适当增加主成分个数,以提高分析精度。采用主成分分析法进行综合评价有全面性、可比性、合理性、可行性等优点,但是也存在一些问题:如果对多个主成分进行加权综合会降低评价函数区分的有效度,且该方法易受指标间的信息重叠的影响。潘石柱等[5]则提出一种将GHA(generalizedh

5、ebbianalgorithm)学习规则应用到核主成分分析的新方法,它结合了核主成分分析和GHA学习规则的优点,既利用了核主成分分析的方法方便地提取数据的非线性特征,又避免了在大样本数据的情况下运算复杂和存储空间大的问题。1.4TOPSIS法[6]该法是基于归一化后的原始数据矩阵,找出有限方案中的最优方案和最劣方案,然后获得某一方案与最优方案和最劣方案间的距离(用差的平方和的平方根值表示),从而得出该方案与最优方案的接近程度,并以此作为评价各方案优劣的依据。其具体方法和步骤如下:评价指标的确定→将指标进行同趋

6、势变换,建立矩阵→归一化后的数据矩阵→确定最优值和最劣值,构成最优值和最劣值向量→计算各评价单元指标与最优值的相对接近程度→排序。指标进行同趋势的变换的方法:根据专业知识,使各指标转化为“高优”,转化方法有倒数法(多用于绝对数指标)和差值法(多用于相对数指标)。但是该法的权重受叠代法的影响,同时由于其对中性指标的转化尚无确定的方法,致使综合评价的最终结果不是很准确[7]。侯志东等[8]提出的基于Hausdauff度量的模糊Topsis方法,首先通过模糊极大集和模糊极小集来确定模糊多属性决策问题的理想解与负理想

7、解,再由Hausdauff度量获得不同备选方案到理想解与负理想解的距离及其贴近度,根据贴近度指标对方案进行优劣排序。该方法思路清晰,计算简单,操作比较容易。刘继斌等[9]在Topsis法中引入指标权重,用属性AHM赋权法求指标权重,再用Topsis法进行综合评价。结果显示基于属性AHM的Topsis综合评价既考虑了参评指标的重要性,又体现了Topsis法能充分利用数据资料的优点,原理简明,结果准确,使用方便。1.5RSR值综合评价法(秩和比法)[6]把各指标值排序(排“秩”R),仅以“秩”R来计算。当指标“高

8、优”时,按“升序”排序,最小值为1,即R值最高者最优;当指标“低优”时,按“降序”排序,最大值为1,即R值最低者最优。当各指标的“秩”相加时,累加和最大者则最优。该方法以实际资料作为计算基础,较为客观,它在算法上是将原始数据转化为序值,虽计算简单,但未充分利用资料的原始信息。当各指标的“秩”相加时,“秩和”(ΣR)最大者则为优;当m为指标数,n为参加排序的单位数,则按下式计算RSR值:RSR=ΣR/

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。