函数解析式的七种求法

函数解析式的七种求法

ID:10431998

大小:238.00 KB

页数:3页

时间:2018-07-06

函数解析式的七种求法_第1页
函数解析式的七种求法_第2页
函数解析式的七种求法_第3页
资源描述:

《函数解析式的七种求法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。例1设是一次函数,且,求解:设,则二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。例2已知,求的解析式解:,三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3已知,求解:令,则,四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点则,解得:,点在

2、上把代入得:整理得五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5设求解①显然将换成,得:②解①②联立的方程组,得:例6设为偶函数,为奇函数,又试求的解析式解为偶函数,为奇函数,又①,用替换得:即②解①②联立的方程组,得,六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。例7已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令得函数解析式为:七、递推法:若题中所给条件含有某种递进关

3、系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8设是定义在上的函数,满足,对任意的自然数都有,求解,不妨令,得:,又①分别令①式中的得:将上述各式相加得:,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。