函数对称性的探求

函数对称性的探求

ID:10264129

大小:55.00 KB

页数:4页

时间:2018-06-14

函数对称性的探求_第1页
函数对称性的探求_第2页
函数对称性的探求_第3页
函数对称性的探求_第4页
资源描述:

《函数对称性的探求》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数对称性的探究——沙雪蓉函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b证明:(必要性)设点P(x,y)是y=f(

2、x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P‘(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。(充分性)设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)∵f(x)+f(2a-x)=2b∴f(x0)+f(2a-x0)=2b,即2b-y0=f(2a-x0)。故点P‘(2a-x0,2b-y0)也在y=f(x)图像上,而点P与点P‘关于点A(a,b)对称,充分性得征。推论:函数y=f(x)的图像关

3、于原点O对称的充要条件是f(x)+f(-x)=0定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x)即f(x)=f(2a-x)(证明留给读者)推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)定理3.①若函数y=f(x)图像同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2

4、a-b

5、是其一个周期。②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2

6、a-b

7、是其一个周期。③

8、若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4

9、a-b

10、是其一个周期。①②的证明留给读者,以下给出③的证明:∵函数y=f(x)图像既关于点A(a,c)成中心对称,∴f(x)+f(2a-x)=2c,用2b-x代x得:f(2b-x)+f[2a-(2b-x)]=2c………………(*)又∵函数y=f(x)图像直线x=b成轴对称,∴f(2b-x)=f(x)代入(*)得:f(x)=2c-f[2(a-b)+x]…………(**),用2(a-b)-x代x得f[2(a

11、-b)+x]=2c-f[4(a-b)+x]代入(**)得:f(x)=f[4(a-b)+x],故y=f(x)是周期函数,且4

12、a-b

13、是其一个周期。一、不同函数对称性的探究定理4.函数y=f(x)与y=2b-f(2a-x)的图像关于点A(a,b)成中心对称。定理5.①函数y=f(x)与y=f(2a-x)的图像关于直线x=a成轴对称。②函数y=f(x)与a-x=f(a-y)的图像关于直线x+y=a成轴对称。③函数y=f(x)与x-a=f(y+a)的图像关于直线x-y=a成轴对称。定理4与定理5中的①②证明留给读者,现证定理

14、5中的③设点P(x0,y0)是y=f(x)图像上任一点,则y0=f(x0)。记点P(x,y)关于直线x-y=a的轴对称点为P‘(x1,y1),则x1=a+y0,y1=x0-a,∴x0=a+y1,y0=x1-a代入y0=f(x0)之中得x1-a=f(a+y1)∴点P‘(x1,y1)在函数x-a=f(y+a)的图像上。同理可证:函数x-a=f(y+a)的图像上任一点关于直线x-y=a的轴对称点也在函数y=f(x)的图像上。故定理5中的③成立。推论:函数y=f(x)的图像与x=f(y)的图像关于直线x=y成轴对称。二、三角函

15、数图像的对称性列表函数对称中心坐标对称轴方程y=sinx(kπ,0)x=kπ+π/2y=cosx(kπ+π/2,0)x=kπy=tanx(kπ/2,0)无注:①上表中k∈Z②y=tanx的所有对称中心坐标应该是(kπ/2,0),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y=tanx的所有对称中心坐标是(kπ,0),这明显是错的。一、函数对称性应用举例例1:定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)=

16、f(5+x),则f(x)一定是()(第十二届希望杯高二第二试题)(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数解:∵f(10+x)为偶函数,∴f(10+x)=f(10-x).∴f(x)有两条对称轴x=5与x=10,因此f(x)是以10为其一个周期的周期函数,∴x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。