欢迎来到天天文库
浏览记录
ID:10179863
大小:22.87 KB
页数:7页
时间:2018-06-12
《比利时raynoise大型声场模拟软件》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、比利时RAYNOISE大型声场模拟软件几何声学软件raynois的介绍:RAYNOISE是比利时声学设计公司LMS开发的一种大型声场模拟软件系统。其主要功能是对封闭空间或者敞开空间以及半闭空间的各种声学行为加以模拟。它能够较准确地模拟声传播的物理过程,这包括:镜面反射、扩散反射、墙面和空气吸收、衍射和透射等现象并能最终重造接收位置的听音效果。该系统可以广泛应用于厅堂音质设计、工业噪声预测和控制、录音设备设计、机场、地铁和车站等公共场所的语音系统设计以及公路、铁路和体育场的噪声估计等。RAYNOISE系统的基本原
2、理: RAYNOISE系统实质上也可以认为是一种音质可听化系统(关于“可听化”,详见参考文献[1])。它主要以几何声学为理论基础。几何声学假定声学环境中声波以声线的方式向四周传播,声线在与介质或界面(如墙壁)碰撞后能量会损失一部分,这样,在声场中不同位置声波的能量累积方式也有所不同。如果把一个声学环境当作线性系统,则只需知道该系统的脉冲响应就可由声源特性获得声学环境中任意位置的声学效果。因此,脉冲响应的获得是整个系统的关键。以往多采用模拟方法,即利用缩尺模型来获得脉冲响应。80年代后期以来,随着计算机技术的高
3、速发展,数字技术正逐渐占据主导地位。数字技术的核心就是利用多媒体计算机进行建模,并编程计算脉冲响应。该技术具有简便、快速以及精度可以不断改善的特点,这些是模拟技术所无法比拟的。计算脉冲响应有两种著名的方法:虚源法(MirrorImageSourceMethod,简称MISM)和声线跟踪法(RayTracingMethod,简称RTM)。两种方法各有利弊[1]。后来,又产生了一些将它们相结合的方法,如圆锥束法(ConicalBeamMehtod,简称CBM)和三棱锥束法(TriangularBeamMethod,
4、简称TBM)[1]。RAYNOISE将这两种方法混合使用作为其计算声场脉冲响应的核心技术[2]。RAYNOISE系统的应用: RAYNOISE可以广泛用于工业噪声预测和控制、环境声学、建筑声学以及模拟现实系统的设计等领域,但设计者的初衷还是在房间声学,即主要用于厅堂音质的计算机模拟。进行厅堂音质设计,首先要求准确快速地建立厅堂的三维模型,因为它直接关系到计算机模拟的精度。RAYNOISE系统为计算机建模提供了友好的交互界面。用户既可以直接输入由AutoCAD或HYPERMESH等产生的三维模型,也可以由用户选
5、择系统模型库中的模型并完成模型的定义。建模的主要步骤包括:(1)启动RAYNOISE;(2)选择模型;(3)输入几何尺寸;(4)定义各面的材料及性质(包括吸声系数等);(5)定义声源特性;(6)定义接收场;(7)其它说明或定义,如所考虑的声线根数、反射级数等。用户可以利用鼠标在屏幕上从各个不同角度来观看所定义的模型及其内部不同结构的特性(用颜色来区分)。然后就可以启动计算了。通过对计算结果进行处理,可以获得所关心的接收场中某点的声压级、A声级、回声图、和频率脉冲响应函数等声学参量。如果还想知道该点的听音效果,可
6、以先将脉冲响应转化为双耳传输函数,并将其与事先在消声室录制好的干信号相卷积,便可以通过耳听到该点的听音效果。一、“局部降噪”技术的由来 目前油气田工业场所普遍存在着噪声污染的问题,在国内,噪声控制已经具备从被动保护转变为主动保护的技术条件及手段,可以开始有针对性的对高噪声场所进行相应的治理。近几年,中国石油各油田对噪声隐患治理开始加大投资,部分油气田在生产场所已大规模开展噪声治理项目。 在噪声治理投资额度受限制的情况下,利用先进的计算机技术,可以对局部区域实现“局部降噪”,可保证岗位工人定点巡回路线达到85
7、dB(A)以下,这就是石油天然气工业噪声治理中的“局部降噪”技术。二、“局部降噪”技术与声场模拟软件RAYNOISE系统 通常,针对油气田噪声超标的厂房做噪声治理,大多数声学公司都优选在室内墙体和屋顶满铺各种构造与材料的吸声体,然后再对发出高噪声的设备进行合理的隔声减振处理,只要采用适合声场、音质特性的构造与材料,同时考虑到设备的通风散热、巡检与维修等因素,选择上述的设计方案一般都会获取良好的降噪效果。毫无疑问,这需要有足够的投资支持,如果建设单位在噪声治理项目上的投资受到限制或者想将有限的投资用于更多的噪声
8、超标场所的治理,就需要有一种新的技术做为支持。“局部降噪”技术的最终成熟应该归功于“声场模拟软件RAYNOISE系统”的应用。 声场模拟软件RAYNOISE系统,其主要功能是对封闭空间或者敞开空间以及半闭空间的各种声学行为加以模拟,它能够较准确地模拟声传播的物理过程。这包括:镜面反射、扩散反射、墙面和空气吸收、衍射和透射等现象并能最终重造接收位置的听音效果。该系统可以广泛应用于工业厂
此文档下载收益归作者所有