材料科学基础-复习题纲

材料科学基础-复习题纲

ID:1014995

大小:1.25 MB

页数:19页

时间:2017-11-06

材料科学基础-复习题纲_第1页
材料科学基础-复习题纲_第2页
材料科学基础-复习题纲_第3页
材料科学基础-复习题纲_第4页
材料科学基础-复习题纲_第5页
材料科学基础-复习题纲_第6页
材料科学基础-复习题纲_第7页
材料科学基础-复习题纲_第8页
材料科学基础-复习题纲_第9页
材料科学基础-复习题纲_第10页
资源描述:

《材料科学基础-复习题纲》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一部分材料的原子结构1、原子结构与原子的电子结构;原子结构、原子排列对材料性能的影响。原子结构:原子由质子和中子组成的原子核以及核外的电子所构成。原子核内的中子显电中性,质子带有正电荷。对电子的描述需要四个量子数:主量子数n:决定原子中电子能量以及与核的平均距离。角动量量子数l:给出电子在同一个量子壳层内所处的能级,与电子运动的角动量有关。磁量子数m:给出每个轨道角动量量子数的能级数或轨道数。自旋角动量量子数s:反映电子不同的自旋方向。原子排列对材料性能影响:固体材料根据原子的排列可分为两大类:晶体与非晶体。(有无固定的熔点

2、和体积突变)晶体:内部原子按某种特定的方式在三维空间呈周期性重复排列的固体。(常考名词解释)非晶体:指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。(名词解释)各向异性:晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。(名词解释)2、材料中的结合键的类型、本质,各结合键对材料性能的影响,键-能曲线及其应用。(常考简答题或是论述题,很重要)原子键合一次键:通过价电子的转移或共用,两原子电子云达到稳定结构二次键:不依靠电子的转移

3、或共享,依靠原子间的偶极吸引力结合一次键离子键:离子键指正、负离子间通过静电作用形成的化学键。(无方向性和饱和性)共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。(有方向性和饱和性)金属键:金属中的自由电子与金属正离子相互作用所构成的键合二次键范德瓦耳斯力:(又称分子间作用力)产生于分子或原子之间的静电相互作用。氢键:与电负性大、半径小的原子X(氟、氧、氮等)以共价键结合,若与电负性大的原子Y(与X相同的也可以)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的键,称为氢键。(X与Y可以是同一种类原子,

4、如水分子之间的氢键)各结合键对材料性能的影响:1.金属材料:金属材料的结合键主要是金属键。由于自由电子的存在,当金属受到外加电场作用时,其内部的自由电子将沿电场方向作定向运动,形成电子流,所以金属具有良好的导电性;金属除依靠正离子的振动传递热能外,自由电子的运动也能传递热能,所以金属的导热性好;随着金属温度的升高,正离子的热振动加剧,使自由电子的定向运动阻力增加,电阻升高,所以金属具有正的电阻温度系数;当金属的两部分发生相对位移时,金属的正离子仍然保持金属键,所以具有良好的变形能力;自由电子可以吸收光的能量,因而金属不透明;而

5、所吸收的能量在电子回复到原来状态时产生辐射,使金属具有光泽。金属中也有共价键(如灰锡)和离子键(如金属间化合物Mg3Sb2)。2.陶瓷材料:简单说来,陶瓷材料是包含金属和非金属元素的化合物,其结合键主要是离子键和共价键,大多数是离子键。离子键赋予陶瓷材料相当高的稳定性,所以陶瓷材料通常具有极高的熔点和硬度,但同时陶瓷材料的脆性也很大。3.高分子材料:高分子材料的结合键是共价键、氢键和分子键。其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力

6、也相应较大,这使得高分子材料具有很好的力学性能。键能曲线:当作用于原子或是离子上的力仅为原子的吸引力和排斥力时能量随位置变化的曲线。应用:1.弹性模量:在x0处的曲率正比于弹性模量2.刚度:曲率半径越小,刚度越高。3.膨胀系数:键能曲线越是左右不对称,线膨胀系数越大。4.熔点高低:越趋于对称,熔点越高。5.键长:x0。3、原子的堆垛和配位数的基本概念及对材料性能的影响。原子的堆垛即为原子的排列方式。配位数是反映原子排列紧密程度的物理量之一,指晶格中任一原子周围与其最近邻且等距离的原子数目。一般配位数越大,晶体排列结构越紧密。4

7、、显微组织基本概念和对材料性能的影响。显微组织:将用适当方法(如侵蚀)处理后的金属试样的磨面或其复型或用适当方法制成的薄膜置于光学显微镜或是电子显微镜下观察到的组织。单相组织:晶粒尺寸:细化晶粒可以提高材料的强度改善材料的塑性和韧性。晶粒形状:等轴晶趋于各向同性。柱状晶趋于各向异性。多相组织:力学性能取决于各组成相相对量,和各自性能。如果弥散相硬度明显高于基体相,提高材料的强度,塑性韧性必将下降。第二部分材料的晶态结构1、晶体与非晶体、晶体结构、空间点阵、晶格、晶胞、晶格常数、布拉菲点阵、晶面间距等基本概念。(常考名词解释)晶

8、体:原子按一定方式在三维空间内周期性地规则重复排列的物质。非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。晶体结构:晶体材料中原子按一定对称性周期性平移重复而形成的空间排列形式。可分为7大晶系、14种平移点阵、32种点群、230种空间群。空间点阵:指几何点在三维空间

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。