中考中的镶嵌问题

中考中的镶嵌问题

ID:10091942

大小:172.00 KB

页数:7页

时间:2018-05-25

中考中的镶嵌问题_第1页
中考中的镶嵌问题_第2页
中考中的镶嵌问题_第3页
中考中的镶嵌问题_第4页
中考中的镶嵌问题_第5页
资源描述:

《中考中的镶嵌问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、中考中的镶嵌问题解答镶嵌问题的关键是判断围绕一个点拼在一起的几个多边形的内角加在一起是否恰好是一个周角.如果能构成一个周角,则能镶嵌成一个平面,否则不能镶嵌.现以中考题为例加以说明.一、用同一种正多边形镶嵌例1(2008年哈尔滨市)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()(A)4种;(B)3种;(C)2种;(D)1种.分析:解答此类问题的关键是求出各正多边形的内角度数,若内角度数是360°的约数,则这个正多边形能够进行平面镶嵌,否则不能进行平面镶嵌.解:由于正三角形、正方形、正五

2、边形、正六边形的内角度数分别为60°、90°、108°、120°.显然,108°不是360°的约数,所以正五边形不能进行平面镶嵌.故应选C.评注:只用同一种正多边形进行平面镶嵌的,只有三种正多边形,即正三角形、正方形、正六边形.二、用两种或两种以上正多边形组合镶嵌例2(2008年绥化市)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.分析:本题是用三种正多边形平面镶嵌,并且一个顶点处每种正多边形只有一个的情形,不妨设所用的三种正多边形的边数分别为n1、n2、n3,则有++=360°,整理得,++=.

3、解:根据分析可知,++=,即++=.解得,n3=12.所以第三个正多边形的边数是12.评注:(1)用两种正多边形组合镶嵌:通过计算会发现,正三角形分别与正四边形、正六边形、正十二边形等组合进行镶嵌;正四边形分别与正三角形、正八边形等组合进行镶嵌.(2)用三种正多边形组合镶嵌,且一个顶点处每种-7-正多边形只有一个,则所用正多边形的边数应满足++=.三、运用镶嵌探索规律例3(2008年重庆市)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如

4、果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.分析:本题可从每次铺设地面中完整的圆的个数进行分析,按照由特殊到一般的数学解题方法来寻找规律.解:把如图所示的四个图案中完整的圆的个数列表如下,并对这些数据进行分析:完整圆的个数第1个1=12+(1-1)2第2个5=22+(2-1)2第3个13=32+(3-1)2第4个25=42+(4-1)2……n个n2+(n-1)2所以,若这样铺成一个10×10的正方形图案,则其中完整的圆的个数为:n2+(n-1)2=102+(10-1)2=181.评注:解

5、决此类问题要把握住图案及图案中所反映出的数据之间的对应关系,通过观察、对比、归纳、猜想等方法,研究图案的变化规律,从而探索出数字的变化规律,进而找到问题的解决方法.-7-用正多边形瓷砖镶嵌地面观察一些建筑物的地面,可以发现这些地面常常是用一种或几种正多边形瓷砖铺砌而成,你知道用哪些正多边形瓷砖可以镶嵌地面吗?一、用同一种正多边形瓷砖镶嵌地面例1为迎接大学生冬季运动会,某市正在进行城区人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是()   正三角形   正方形    正五边形    正六边形    A      B    

6、  C     D分析:当用n块内角为x°的同一种正多边形围绕一点拼在一起时,则有nx°=360°,此时有n=,由于n为正整数,所以x只能为60,90,120.也就是正多边形中只有正三角形(内角为60°),正方形(内角为90°),正六边形(内角为120°)才能单独镶嵌地面,而其它的同一种正多边形瓷砖不能单独镶嵌地面.解:选C.提示:用一种正多边形瓷砖可以镶嵌地面,这种正多边形只能是正三角形,正方形,正六边形中的一种.二、用两种正多边形瓷砖镶嵌地面例2在下列四组多边形地板砖中,①正三角形与正方形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的

7、两种多边形结合,能镶嵌地面的是(  )A.①③④B.②③④C.①②③D.①②④分析:假设用x块正三角形瓷砖与y块正方形瓷砖可以镶嵌.则60°x+90°y=360°,即2x+3y=12,由于x,y为正整数,只有当x=3,y=2时2x+3y=12成立,所以用3块正三角形瓷砖和2块正方形瓷砖可以镶嵌地面;同样的方法可以知用2块正三角形瓷砖和2正六边形瓷砖或用4块正三角形瓷砖和1块正六边形瓷砖可以镶嵌地面;用2块正八边形瓷砖和1块正方形瓷砖可以镶嵌地面;用正六边形和正方形瓷砖不能镶嵌地面.解:选D.-7-提示:用两种正多边形瓷砖镶嵌地面,这两种瓷砖可以是正三角形和正方形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。