资源描述:
《第十章 计数原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、、、第十章计数原理第一节排列与组合第一部分三年高考荟萃2010年高考题一、选择题1.(2010全国卷2理)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.2.(2010全国卷2文)(9)将标号为1,2
2、,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【解析】B:本题考查了排列组合的知识∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有,余下放入最后一个信封,∴共有3.(2010重庆文)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A)30
3、种(B)36种(C)42种(D)48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即=42第-37-页共37页、、法二:分两类甲、乙同组,则只能排在15日,有=6种排法甲、乙不同组,有=36种排法,故共有42种方法4.(2010重庆理)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号
4、或6、7号共有种方法甲乙排中间,丙排7号或不排7号,共有种方法故共有1008种不同的排法5.(2010北京理)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)(B)(C)(D)【答案】A6.(2010四川理)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A)72(B)96(C)108(D)144【答案】C解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,3=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共
5、3=12个算上个位偶数字的排法,共计3(24+12)=108个7.(2010天津理)(10)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288种(B)264种(C)240种(D)168种【答案】D第-37-页共37页、、【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。(1)B,D,E,F用四种颜色,则有种涂色方法;(2)B,D,E,F用三种颜色,则有种涂色方法;(3)B,D,E,F用两种颜色,则有种涂
6、色方法;所以共有24+192+48=264种不同的涂色方法。【温馨提示】近两年天津卷中的排列、组合问题均处理压轴题的位置,且均考查了分类讨论思想及排列、组合的基本方法,要加强分类讨论思想的训练。8.(2010天津理)(4)阅读右边的程序框图,若输出s的值为-7,则判断框内可填写(A)i<3?(B)i<4?(C)i<5?(D)i<6?【答案】D【解析】本题主要考查条件语句与循环语句的基本应用,属于容易题。第一次执行循环体时S=1,i=3;第二次执行循环时s=-2,i=5;第三次执行循环体时s=-7.i=7,所以判断框
7、内可填写“i<6?”,选D.【温馨提示】设计循环语句的问题通常可以采用一次执行循环体的方式解决。9.(2010福建文)10.(2010全国卷1理)(6)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A)30种(B)35种(C)42种(D)48种【答案】A第-37-页共37页、、11.(2010四川文)(9)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是(A)36(B)32(C)28(D)24【答案】A解析:如果5在两端,则1、
8、2有三个位置可选,排法为2×=24种如果5不在两端,则1、2只有两个位置可选,3×=12种共计12+24=36种12.(2010湖北文)6.现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.B.C.D.13.(2010湖南理)7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不