2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案

2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案

ID:8577570

大小:150.00 KB

页数:7页

时间:2018-04-02

2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案_第1页
2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案_第2页
2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案_第3页
2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案_第4页
2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案_第5页
资源描述:

《2014人教a版数学必修一《1.2.2《函数的表示法》(1)》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、四川省泸县第九中学高中数学《1.2.2函数的表示法(1)》教案新人教A版必修1课型:新授课教学目标:(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用。教学重点:会根据不同的需要选择恰当的方法表示函数。教学难点:分段函数的表示及其图象。教学过程:一、课前准备(预习教材---,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么?二、新课导学:(一)学习探究探究任务:函数的三种表示方法讨论:

2、结合课本P15给出的三个实例,说明三种表示方法的适用范围及其优点小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);优点:简明扼要;给自变量求函数值。图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);优点:直观形象,反映两个变量的变化趋势。列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);优点:不需计算就可看出函数值,如股市走势图;列车时刻表;银行利率表等。典型例题例1.(课本P19例3)某种笔记本的单价是2元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三

3、种表示法表示函数y=f(x).变式:作业本每本0.3元,买x个作业本的钱数y(元),试用三种方法表示此实例中的函数。反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例2:(课本P20例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟988791928895张城907688758680赵磊686573727582班级平均分88.278.385.480.375.782.6请你对这三们同学在高一学年度的数学学习情况做一个分析例3:某市“招手即停”公共汽车的票价按下列规则

4、制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。图象(略)变式:邮局寄信,不超过20g重时付邮资0.5元,超过20g重而不超过40g重付邮资1元,每封x克()重的信应付邮资数y(元),试写出y关于x的函数解析式,并画出函数图象。小结:在函数的定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,动手试试:1.已知f(x)=,求f(0)、f[f(-1)]的值

5、2.设函数,则18,若,则=4。归纳小结:本节课归纳了函数的三种表示方法及优点;讲述了分段函数概念;了解了函数的图象可以是一些离散的点、线段、曲线或射线。课题:函数的表示法(二)课型:新授课教学目标:(1)了解映射的概念及表示方法;(2)掌握求函数解析式的方法:换元法,配凑法,待定系数法,消去法,分段函数的解析式。教学重点:求函数的解析式。教学难点:对函数解析式方法的掌握。教学过程:一、课前准备:(预习教材,找出疑惑之处)复习:举例初中已经学习过的一些对应,或者日常生活中的一些对应实例:(1)对于任何一个实数a,数轴上都有唯一的点P和它对应;(2)

6、对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;(3)对于任意一个三角形,都有唯一确定的面积和它对应;(4)某影院的某场电影的每一张电影票有唯一确定的座位与它对应;你还能找出一些其它的实例吗?二、新课导学:(一)映射的概念:定义:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)。记作:例1.(课本P22例7)以下给出的对应是不是从A到集合B的映射?(1)集合A={P

7、P是数轴上的点},

8、集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P

9、P是平面直角坐标系中的点},B=,对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x

10、x是三角形},集合B={x

11、x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x

12、x是新华中学的班级},集合B={x

13、x是新华中学的学生},对应关系:每一个班级都对应班里的学生。反思:(1)映射有三个要素:两个集合,一种对应法则,缺一不可;(2)A,B可以是数集,也可以是点集或其它集合。这两个集合具有先后顺序:符号“f:A→B”表示A到B的映射,符号“f:

14、B→A”表示B到A的映射,两者是不同的;(3)集合A中的元素不可剩余,B中元素可剩余。讨论:1函数与映射两者的联系与区别分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。