matlab实验遗传算法与优化设计

matlab实验遗传算法与优化设计

ID:8390225

大小:614.50 KB

页数:9页

时间:2018-03-24

matlab实验遗传算法与优化设计_第1页
matlab实验遗传算法与优化设计_第2页
matlab实验遗传算法与优化设计_第3页
matlab实验遗传算法与优化设计_第4页
matlab实验遗传算法与优化设计_第5页
资源描述:

《matlab实验遗传算法与优化设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验六遗传算法与优化设计一、实验目的1.了解遗传算法的基本原理和基本操作(选择、交叉、变异);2.学习使用Matlab中的遗传算法工具箱(gatool)来解决优化设计问题;二、实验原理及遗传算法工具箱介绍1.一个优化设计例子图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W、t分别是上电极的宽度和厚度,D是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗

2、。根据微带传输线理论,高频工作状态下(假定信号频率1GHz),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加):图1微带线横截面结构以及场分布示意图(1)其中为金属的表面电阻率,r为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W、D、t,它们组成决策向量[W,D,t]T,待优化函数称为目标函数。上述优化设计问题可以抽象为数学描述:(2)其中是决策向量,x1,…,xn为n个设计变量。这是一个单目标的数学规划问题:在一组针对决策变

3、量的约束条件下,使目标函数最小化(有时也可能是最大化,此时在目标函数前添个负号即可)。满足约束条件的解X称为可行解,所有满足条件的X组成问题的可行解空间。2.遗传算法基本原理和基本操作遗传算法(GeneticAlgorithm,GA)是一种非常实用、高效、鲁棒性强的优化技术,广泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。物种通过遗传将这些好的

4、性状复制给下一代,同时也通过种间的交配(交叉)和变异不断产生新的物种以适应环境的变化。从总体水平上看,生物在进化过程中子代总要比其父代优良,因此生物的进化过程其实就是一个不断产生优良物种的过程,这和优化设计问题具有惊人的相似性,从而使得生物的遗传和进化能够被用于实际的优化设计问题。按照生物学知识,遗传信息¾基因(Gene)的载体是染色体(Chromosome),染色体中一定数量的基因按照一定的规律排列(即编码),遗传基因在染色体中的排列位置称为基因座(Locus),在同一个基因座上所有可能的基因就称为等位基因(Allele),生物所持有的基因以及基因的构成

5、形式称为生物的基因型(Genotype),而该生物在环境中所呈现的相应性状称为该生物的表现型(Phenotype)。在遗传过程中,染色体上的基因能够直接复制给子代从而使得子代具有亲代的特征,此外,两条染色体之间也通过交叉(Crossover)而重组,即两个染色体在某个相同的位置处被截断,其前后两串基因交叉组合而形成两个新的染色体。在基因复制时也会产生微小的变异(Mutation),从而也产生了新的染色体。因此交叉和变异是产生新物种的主要途径。由于自然选择,在子代群体新产生的物种(或染色体)当中,只有那些对环境适应度高的才能生存下来,即适应度越高的被选择的概

6、率也越大,然后又是通过遗传和变异再自然选择,一代一代不断进化。因此生物遗传和进化的基本过程就是:选择(即复制)、交叉和变异。遗传算法就是通过模拟生物进化的这几个基本过程而实现的。①编码编码是设计遗传算法首要解决的问题。在生物进化中,选择、交叉、变异这些基本过程都是基于遗传信息的编码方式进行的,即基于染色体的基因型而非表现型,因此要模拟生物进化过程,遗传算法必须首先对问题的可行解X(决策向量)进行某种编码,以便借鉴生物学中染色体和基因等概念。在遗传算法中,将每一个决策向量X用一个染色体V来表示:(3)其中每一个vi代表一个基因,染色体的长度m不一定等于设计变

7、量的数目n,取决于染色体上基因的编码方式。一般有两种编码方式:二进制编码和浮点数编码。如果是二进制编码,每一个设计变量xi的真实值用一串二进制符号0和1按照一定的编码规则来表示,每个二进制符号就代表一个基因,因此染色体长度要远大于设计变量的数目。这种由二进制编码构成的排列形式V就是染色体(也称个体)的基因型,而基因型经过解码后所对应的决策向量X(即可行解)就是个体的表现型。如果是浮点数编码,每个设计变量用其取值范围内的一个浮点数表示,构成染色体的一个基因vi,因此个体的编码长度m也就等于决策变量的个数n,由于这种编码方式使用的是决策变量的真实值,所以也称真

8、值编码方法。无论哪种编码方式,所有可能的染色体(个体)V构成问题的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。