四川省成都外国语学校2023-2024学年高二上学期10月月考数学 Word版无答案.docx

四川省成都外国语学校2023-2024学年高二上学期10月月考数学 Word版无答案.docx

ID:83594103

大小:500.91 KB

页数:6页

时间:2023-12-07

上传者:老李
四川省成都外国语学校2023-2024学年高二上学期10月月考数学  Word版无答案.docx_第1页
四川省成都外国语学校2023-2024学年高二上学期10月月考数学  Word版无答案.docx_第2页
四川省成都外国语学校2023-2024学年高二上学期10月月考数学  Word版无答案.docx_第3页
四川省成都外国语学校2023-2024学年高二上学期10月月考数学  Word版无答案.docx_第4页
四川省成都外国语学校2023-2024学年高二上学期10月月考数学  Word版无答案.docx_第5页
四川省成都外国语学校2023-2024学年高二上学期10月月考数学  Word版无答案.docx_第6页
资源描述:

《四川省成都外国语学校2023-2024学年高二上学期10月月考数学 Word版无答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

成都外国语学校2023~2024学年度高二上期10月学月考试数学试卷考试时间120分钟;满分150分注意事项:1.答题前,考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡.2.答选择题时,必须使用2B铅笔填涂;答非选择题时,使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生留存,以备评讲).一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,已知直线PM、QP、QM的斜率分别为、、,则、、的大小关系为()A.B.C.D.2.缙云山是著名的旅游胜地.天气预报中秋节连续三天,每天下雨的概率为0.5,现用随机模拟的方法估计三天中至少有两天下雨的概率:先由计算器产生0到9之间的整数值的随机数,指定0,1,2,3,4表示当天下雨,5,6,7,8,9表示当天不下雨,每3个随机数为一组,代表三天是否下雨的结果,经随机模拟产生了20组随机数:926446072021392077663817325615405858776631700259305311589258据此估计三天中至少有两天下雨的概率约为()A.0.45B.0.5C.0.55D.0.63.已知直线与直线互相平行,则实数的值为()A.B.2或C.2D.4.现从2个男生2个女生共4人中任意选出2人参加巴蜀中学高三年级的百日誓师大会,已知选出的2 人中有一个是男生,则另一个是女生的概率为()A.B.C.D.5.△ABC中,D为AB上一点且满足,若P为线段CD上一点,且满足(,为正实数),则的最小值为()A.3B.4C.5D.66.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的顶点,且,则的欧拉线的方程为()A.B.C.D.7.在如图所示的电路中,5个盒子表示保险匣,设5个盒子被断开分别为事件,,,,.盒子中所示数值表示通电时保险丝被切断的概率,下列结论正确的是()A.,两个盒子串联后畅通概率为B.,两个盒子并联后畅通的概率为C.,,三个盒子混联后畅通的概率为D.当开关合上时,整个电路畅通的概率为8.的最小值所属区间为()A.B.C.D.前三个答案都不对二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对的得2分,有选错的得0分.9.某保险公司为客户定制了5 个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例:用该样本估计总体,以下四个选项正确的是()A.54周岁以上参保人数最少B.18~29周岁人群参保总费用最少C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群20%10.下列结论错误的是()A.过两点的所有直线,其方程均可写为B.已知点,点在轴上,则的最小值为C.直线与直线之间的距离为D.已知两点,过点的直线与线段有公共点,则直线的斜率的取值范围是11.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为 D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率12.如图;正方体的棱长为2,是侧面上的一个动点(含边界);点在棱上;则下列结论正确的有()A.若;沿正方体表面从点到点的最短距离为B.若,三棱锥的外接球表面积为C.若;,则点的运动轨迹长度为D.若;平面被正方体截得截面面积为三、填空题:本大题共4小题,每小题5分,共20分.13.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为29,30,38,25,37,40,42,32,那么这组数据的第75百分位数为______.14.直线l过点(1,2),且纵截距为横截距两倍,则直线l的方程是___________.15.正四棱锥的底面边长为,侧棱长为,点S、A、B、C、D都在同一个球的球面上,则该球的表面积为____________.16.如图,某人在垂直于水平地面的墙面前的点处进行射击训练,已知点到墙面的距离为,某目标点沿墙面上的射线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小,则的最大值是______.(仰角为直线与平面所成的角) 四、解答题:第17题10分,第18~22题每道题12分,共计70分.解答应写出相应的文字说明、证明过程或者演算步骤.17.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取2名同学来自同一年级”,求事件M发生的概率.18.已知直线l1:2x+y+3=0,l2:x﹣2y=0.(1)求直线l1关于x轴对称的直线l3的方程,并求l2与l3的交点P;(2)求过点P且与原点O(0,0)距离等于2的直线m的方程.19.某市为了了解人们对“中国梦”的伟大构想的认知程度,针对本市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有人,按年龄分成5组,其中第一组:,第二组:,第三组:,第四组:,第五组:,得到如图所示的频率分布直方图,已知第一组有10人. (1)根据频率分布直方图,估计这人的平均年龄和第80百分位数;(2)现从以上各组中用分层随机抽样的方法抽取20人,担任本市的“中国梦”宣传使者.(i)若有甲(年龄38),乙(年龄40)两人已确定人选宣传使者,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;(ii)若第四组宣传使者的年龄的平均数与方差分别为37和,第五组宣传使者的年龄的平均数与方差分别为43和1,据此估计这人中35~45岁所有人的年龄的方差.20.为了普及垃圾分类知识,某校举行了垃圾分类知识考试.试卷中只有两道题目,已知甲同学答对每题的概率都为,乙同学答对每题的概率都为,且在考试中每人各题答题结果互不影响.已知每题甲、乙同时答对的概率为,恰有一人答对的概率为.(1)求和的值;(2)试求两人共答对3道题的概率.21.在锐角中,角A,B,C所对边分别为a,b,c,.(1)求A;(2)若D为延长线上一点,且,求的取值范围.22.如图,四边形与均为菱形,,,,记平面与平面的交线为.(1)证明:;(2)证明:平面平面;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭