Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown

Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown

ID:81816628

大小:3.83 MB

页数:5页

时间:2023-07-21

上传者:U-14522
Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown_第1页
Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown_第2页
Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown_第3页
Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown_第4页
Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown_第5页
资源描述:

《Design and Characteristics of an Opto fl uidic Phase Modulator Based on Dielectrowetting - Liang et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleDesignandCharacteristicsofanOptofluidicPhaseModulatorBasedonDielectrowettingZhongchengLiang,WenxuanDing,RuiZhao,*YayanHuang,MeimeiKong,andTaoChenCiteThis:Langmuir2021,37,769−773ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Inthispaper,anoptofluidicphasemodulatorbasedondielectrowettingisdesignedandfabricatedtoadjusttheopticalphase.Twoliquidsarefilledinthedevice,andatransparentsheetisemployedattheliquidinterfacetokeeptheinterfaceflat.Whendifferentvoltagesareappliedtothemodulator,theflatinterfacemovesupanddown,leadingtothevariationoftheopticalphase.Atheoreticalmodelisconstructedtopredicttheopticalphaseshiftquantitatively,andthephaseregulationabilityisalsotestedexperimentally.Ourmodulatorrealizescontinuousadjustmentoftheopticalphaseinacertainrangebytheoperationofvoltageadjustment.Whenthevoltageisincreasedto150V,theopticalphasemodulationrangeofourproposedmodulatorcanreach9.366π.■INTRODUCTIONeffectsofviscosity,ACfrequency,andvolumeofsiliconeoilon20liquidbehavior.ThefocallengthofatunabledielectricliquidOpticalphasemodulationishighlyappliedinindustriallenschangesfrom14.2to6.3mmwhenthevoltageismanufacturingandscientificresearch.Intheopticalcoherence21tomographyimagingsystem,1−3toobtainthetomographicincreasedfrom0to125V.A.OusatiAshtianiandH.Jiangimageofthemeasuredobject,theopticalpathofonearminreportedanopticalphasemodulatoractuatedbyelectro-theinterferometerneedstobeadjustedtorealizeinterferencewetting,andanopticalphaseshiftof171°issuccessfully4,5achievedunderavoltageof100V.22,23LeiLiproposedapatterns.Thephase-shiftinginterferometrytechnology,asanewimagingandmeasurementtechnology,anddifferentphasedisplaceableandfocus-tunableelectrowettingoptofluidiclens,shiftsontheinterferometricreferencearmarerequiredtowhereametalcylinderisemployedasthesidewallelectrodegenerateinterferencepatternswithcorrespondingdifferentandtheliquidcombinationsareNaClandsiliconeoil.Thephaseshiftsontherecordingplane.Incommunicationlargestdisplaceabledistanceofthislensis8.3mmandits6,724systems,electro-opticmodulatorsmodulatetheopticalrelativezoomratiois1.31×.QionghuaWangdesignedanphaseoflighttoachievesignaltransmission.Generally,thereopticalpathmodulatorbasedonelectrowettingtomodulateDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at08:22:03(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.aremainlytwomethodstoadjusttheopticalphase.Oneistothebackfocallengthintheimagingsystem,wheretherelativechangethegeometriclengthofthelightbymechanically25opticalpathlengthchangeis1.15mm.Theseworksprovide8,9movingtheopticalelements,andtheotheristochangethereferencestotheopticalphasemodulatordesign.refractiveindexofthetransmissionmedium(e.g.,liquidInthiswork,anoptofluidicphasemodulatorbasedon10,11crystal).However,thesetraditionaldeviceshaveproblemsdielectrowettingisproposedtomodulatetheopticalphase.suchascomplexstructures,bigsize,polarizationdependence,Thedeviceisfilledwithtwoimmiscibleliquids,andaelectromagneticinterference,andsoon.Asaconsequence,atransparentsheetisfixedbetweentheliquidandliquidtransmissiveopticalphasemodulationwithpolarizationinterfacebyanelasticfilm26togenerateaflatinterface.Aindependence,simplestructure,easyminiaturization,highmeasurementplatformisestablishedtomeasuretheperform-modulationaccuracy,andnoelectromagneticinterferenceisstillverydesirableforhigh-performanceopticalsystems.Microfluidictechnology12−19hasbeendevelopedinrecentReceived:October21,2020years,andrelativedeviceshavebeendevelopedandwidelyRevised:December22,2020usedbecauseofnoelectromagneticinterference,simplePublished:January5,2021structure,polarizationindependence,andsoon.ChihChengYangdevelopedaliquidmicrolensdrivenbydielectricforceandanalyzedthedynamicbehaviorofdielectricliquids,the©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c03064769Langmuir2021,37,769−773

1Langmuirpubs.acs.org/LangmuirArticleFigure1.Structuredrawingoftheopticalphasemodulator(section).anceoftheopticalphasemodulator.Theresultsshowthatourproposedmodulatorcanchangetheopticalphasecontinu-ously.Themaximumrangeoftheopticalphasemodulationisabout9.366πwhenthevoltageis150V.Relatedresearchwillpromotethedevelopmentofopticalphasemodulatorsand■provideareferenceforphasemodulationinopticalsystems.STRUCTURALDESIGNANDDEVICEFABRICATIONStructuralDesign.Figure1showsthecrosssectionofouropticalphasemodulator,whichismainlycomposedofanuppercoversheet,alowercoversheet,anoutercylindricalchamber,aninnercylindricalchamber,andatransparentsheet.Tosimplifythestructuredesignandfabricationprocedure,anFigure3.Workingprinciplediagramoftheopticalphasemodulator.indiumtinoxide(ITO)planarelectrodeshowninFigure2is(a)InitialstateU=0V.(b)OperatingstateU=100V.andanelasticfilmisattachedattheliquid−liquidinterfacetoholdthetransparentsheet.Duetotheexistenceofthetransparentsheet,theinterfacewherethelightpassesthroughisalwaysflat,andtherefore,noadditionalaberrationsareintroduced.Theopticalpathdifference(OPD)inFigure3a,bcanbeexpressedasOPD=nlloo(′−+o)nlgg(′−=lg)ΔnlΔo(1)whereΔlo=lo′−lo,ΔloisthevariationofthedropletheightFigure2.Structureoftheinterdigitatedelectrode.afterapplyingvoltage,Δn=ng−no,ngistherefractiveindexofethyleneglycol,andnoistherefractiveindexofsiliconeoil.usedintheoptofluidicphasemodulator.AsiliconeoildropletTheshapeoftheinsulatingdropletinFigure3canbeisdroppedatthebottomcenterofthedevice,andtheregardedasthedifferencebetweentwosphericalcaps.Becausesurroundingisfilledwithethyleneglycol.Atransparentsheetisoftheconstantvolumeofthedroplet,therelationshipbetweenfixedatthebottomoftheinnercylindricalchamberbyanthechangeofdropheightΔloandthevoltageUcanbederivedelasticfilm,whichseparatesethyleneglycolandsiliconeoilandbasedontheminimizationofthesurfacefreeenergyadherestotheliquid−liquidinterface.Becauseoftheexistence2/32/3oftheelasticfilm,thetransparentsheetcanmoveupandijjεπ00ΔεV24πVV0yzzijj4π0yzzdown,whichisthekeytotheopticalphasecompensation.Δlo=jjjU+−zzzjjjzzz5πδγ5π5πWorkingPrinciple.Theworkingprincipleisdepictedinklf{k{Figure3.Whenavoltageisappliedtotheplanarelectrode,the(2)dielectricconstantofthesiliconoildropislowerthanthatofwhereε0isthevacuumdielectricconstant,Δε=εf−εl,εfistheethyleneglycol,causingthedielectricforcetosqueezethetherelativedielectricconstantofethyleneglycol,εlisthesiliconoildropletinwardandincreasethecontactanglewithrelativedielectricconstantofsiliconeoil,V0isthevolumeof21thebottomsurface.Beingsqueezed,theheightofthesiliconethesiliconeoildroplet,δisthepenetrationdepthoftheoildropletincreases,andthenthesiliconeoilpushestheelectricfield,andγlfistheinterfacialtensionbetweensiliconetransparentsheetupward.Oncethevoltageisdecreased,theoilandethyleneglycol.heightofthesiliconeoildrops,andthefloatingsheetmovesAccordingtothetheoryofphysicaloptics,therelativedownward.Therefore,theliquid−liquidinterfacecanmoveupvariationoftheopticalphaseisordownhorizontallybycontrollingthevoltage,whichcauses2πthevariationoftheopticalpathintheverticaldirectionandΔφ=·Δ·Δnloλ(3)realizesthemodulationoftheopticalphase.Here,atransparentsheetisfixedonthetopoftheinsulatingdroplet,whereλisthewavelengthofthebeam.770https://dx.doi.org/10.1021/acs.langmuir.0c03064Langmuir2021,37,769−773

2Langmuirpubs.acs.org/LangmuirArticleFigure4.Fabricationprocedureoftheoptofluidicphasemodulator:(a)deviceofthephasecompensator,(b)sheet,(c)outercylindricaltube,(d)lowercoversheet,(e)uppercoversheet,(f)innercylindricaltube,(g)electrode.Combiningeqs1−3,thevariationoftheopticalphasewithTable1.ParametersoftheLiquidMediumvoltagecanbeexpressedassiliconeoilethyleneglycolglycerolÄÅÅ2/3density(g/cm3)0.961.11551.263−1.3032πÅÅÅÅijjεπ00ΔεV4πVyzzΔφ=Δ·nkÅÅjjU2+0zzdielectricconstant2.1737−4156.2λÅÅÅÅj5πδγ5πzrefractiveindex1.411.431.47ÅÇklf{Ésurfacetension(mN/m)15.9−21.546.4961.92/3ÑÑijj4πVyzzÑÑviscosity(mPa·s)9625.6615000ÑÑ−jjzzÑÑj5πzÑÑtheactionofthefloatingsheet,thesphericalliquid−liquidk{ÑÑÑÖ(4)interfaceturnsintoaplanarinterface.wherekistheempiricalcoefficient.Byusingeq4,thevariation■oftheopticalphasecanbecalculatedandwillbecomparedEXPERIMENTALSECTIONwiththeexperimentaldata.Figure5istheschematicdiagramoftheopticalphasemeasurementoftheoptofluidicphasemodulator.AMichelsoninterferometerisDeviceFabrication.ThefabricationprocedureoftheoptofluidicphasemodulatorisprovidedinFigure4.High-transparencymaterialsareemployedtofacilitatethepassageandobservationoflight.TheITOplanarelectrode(30mm×30mm)iscoatedwithSU8(∼5μmthickness)andFluoroPelsuccessively.ItshouldbenotedthatFluoroPelisonlycoatedonthecentralarea(∼9mmindiameter)asahydrophobiclayertoconfinethesiliconoildroplet,therangecoveredbyCytop,andatthesametimereducethefrictionduringthemovementoftheoildroplets.Acylindricalpolymethylmethacrylate(PMMA)cavitywiththesizeof15mm(diameter)×10mm(height)isusedastheFigure5.OpticalphasemeasurementoftheoptofluidicphaseouterchamberwhichisfixedonthebottomsubstrateinFiguremodulator.4c.Inordertofacilitatetheliquidsflowfluently,fourcircularholes(1.5mmindiameter)aremadeontheinnercylindricalemployed,anda632.8nmhelium−neonlaserisusedasthelightchamber.Theinnerchamber(diameter7mm×height8mm)source.Theemittedlightpassesthroughtwopolarizers,abeamisaneffectivepartofthedevice,whichisconnectedwithaexpander,andasmallaperturediaphragminturnandthenilluminatesthebeamsplitteroftheinterferometeratanangleof45°.ThePMMAannularsheet(6mmindiameter).Thetransparentvariationoftheopticalphasethroughourdeviceisreflectedinthepartitionisfixedatthebottomoftheinnerchamberbyanmovementoffringes.ACCDcamera(MV-GE202GM-T:2/3″elasticfilmpolydimethylsiloxane(PDMS,∼100μmthickness).CMOS)isemployedtocapturetheevolutionofinterferencefringes.Thesiliconeoil(DowCorningOSsiliconeoils,n=1.41,Avideooftheinterferenceringmovementisprovidedinthedielectricconstant=2.17)andethyleneglycol(orglycerol)areappendix.employedasworkingsubstances,whichareinjectedintothechamberseparatelybyusingasyringepipette.Therelative■RESULTSANDDISCUSSIONparametersarelistedinTable1(roomtemperature20°C).InordertoimprovetheperformanceofouroptofluidicphaseWhenthevoltageiszero,becausethedensityofthetwomodulator,thedielectrowettingbehaviorofsiliconeoilliquidsisapproximatelyequalandtheyareimmisciblewithdropletswiththetransparentsheetfastenedbyanelasticeachother,asphericalliquid−liquidinterfaceisformed.Underfilminanethyleneglycolisexperimentallyanalyzed.Figure6771https://dx.doi.org/10.1021/acs.langmuir.0c03064Langmuir2021,37,769−773

3Langmuirpubs.acs.org/LangmuirArticleASi-AmplifiedDetector(PDA10A-EC,ThorlabsInc.,Newton,NJ,USA)replacestheCCDcamerashowninFigure5tocalculatetheopticalphasemodulationvaluesbydetectingtheintensitiesoftheinterferencefringes.Figure8showstheFigure8.Variationofopticalphasedifferencevsvoltage.Figure6.Dielectrowettingbehaviorofthesiliconoildropletinvariationofopticalphaseforourmodulatoratdifferentethyleneglycol.(a)U=0V,(b)U=130V,(c)thecontactangleofvoltages,wherethehollowcircle(○)istheexperimentaldata,siliconeoildropletvsvoltage.whilethelinewiththehollowsquare(□)isthetheoreticalvaluescalculatedbyeq3.Thedataoftheoreticalpredictionandexperimentshowgoodagreement.Themaximumphaseshowsthevariationtrendsofthecontactangleandheightofshiftreachesapproximately9.366π.Thereisnosignificantthesiliconoildropletwithvoltageinethyleneglycol.Figure6achangeintheopticalphasewhenthevoltageissmallerthan70showstheinitialstateoftheoildroplets,whilethevoltageisV.Whenthevoltagechangesfrom80to110V,theoptical130VasshowninFigure6b.Whenthedropletisconstrainedphaseofourdevicevarieslinearlywithvoltages,thatis,ourbytheelasticmembraneandsheet,itscontactanglechangesdeviceisworkinginthelinearregion.Oncetheworkingwiththevoltageobviously,whileitsheightchangesslightly.voltagereachesabove150V,instabilityofpropertyandbadFigure6cshowsthatthecontactangleofthesiliconeoilapplyingabilityexistforthismodulator.Afteraseriesofdropletincreaseswithvoltage.runningtests,theresultsshowthatouropticalphaseFigure7providestheinterferenceringscapturedatU=95modulatorhasstableperformanceinopticalphasemodulation.−150V,respectively.Whenthevoltageisintherangeof0−Inthefuture,theoptimumliquidcombinationswithalarger70V,thereisnoobviousmovementintheinterferencefringe.refractiveindexdifferencewillbeinvestigatedforachievingaHere,70Visdefinedastheoperatingthresholdofourdevice.broadermodulationrangeofopticalphaseshiftatalowerTheauthorssuggestthatthethresholdiscausedbythepinning27voltage.effectofdielectrowettinginconjunctionwiththepotentialrequiredformechanicaldeformationoftheelasticfilm.When■thevoltageisincreasedupto70V,theinterferenceringsstartCONCLUSIONStoshrinkinward,monitoredbytheCCDcamera.WhentheInthispaper,anoptofluidicphasemodulatorbasedonvoltageis150V,theshiftnumberoftheinterferencefringeisdielectrowettingisdesignedandexperimentallyfabricated.Anabout9.Theproblemsofnonstandardandedge-blurringringsopticalphasedetectionsystemisestablishedtotesttheinourinterferencefringesareassumedtobecausedbytheperformancesofthephasemodulator.Atheoreticalmodelisunevencoatingofthedielectriclayerinthefabricationprocessconstructedtopredicttheopticalphaseshiftasafunctionofandpoorlighttransmissioninmeasurement.voltage.TherelativedataofpredictionshowgoodagreementFigure7.Evolutionofinterferencefringesvsvoltage(thefringes“spitout”).(a)95V,(b)100V,(c)105V,(d)110V,(e)115V,(f)120V,(g)125V,(h)130V,(i)135V,(j)140V,(k)145V,(l)150V.772https://dx.doi.org/10.1021/acs.langmuir.0c03064Langmuir2021,37,769−773

4Langmuirpubs.acs.org/LangmuirArticlewiththeexperiment.Theresultsshowthatouroptofluidic(7)Gao,Y.;Walters,G.;Qin,Y.;Chen,B.;Min,Y.;Seifitokaldani,phasemodulatorcanrealizea9.366πphaseshiftwhentheA.;Sun,B.;Todorovic,P.;Saidaminov,M.I.;Lough,A.;Tongay,S.;voltageisintherangeof70−150V.WhenthevoltagerangesHoogland,S.;Sargent,E.H.Electro-OpticModulationinHybridfrom80to110V,ourdeviceoperatesatthelinearregionandMetalHalidePerovskites.Adv.Mater.2019,31,1808336.(8)Du,J.;Hu,J.;Chen,S.K.;Goh,C.S.;Tseng,K.J.Atunabletherelativephaseshiftachieves4.535π.low-frequencypiezoelectricphaseshifter.Sens.Actuators,A2006,128,25−32.■AUTHORINFORMATION(9)Liu,X.;Jian,S.;Jiang,H.;Liu,G.StudyontheopticalfiberCorrespondingAuthorphasemodulatorbasedonPZTceramicsresonatortechnology.Piezoelectr.Acoustoopt.2011,33,699−701.RuiZhao−TheMicrofluidicOpticalTechnologyResearch(10)Love,G.D.;Major,J.V.;Purvis,A.Liquid-crystalprismsforCenter,SchoolofElectronicandOpticalEngineering,Nanjingtip-tiltadaptiveoptics.Opt.Lett.1994,19,1170−1172.UniversityofPostsandTelecommunications,Nanjing(11)Love,G.D.Wave-frontcorrectionandproductionofZernike210023,China;Email:zhaor@njupt.edu.cnmodeswithaliquid-crystalspatiallightmodulator.Appl.Opt.1997,36,1517−1524.Authors(12)Liang,Z.;Zhao,R.Optofluidicsanditspotentialapplications.ZhongchengLiang−TheMicrofluidicOpticalTechnologyLaserOptoelectron.Prog.2008,06,16−23.ResearchCenter,SchoolofElectronicandOptical(13)Russell,A.;Kreit,E.;Heikenfeld,J.ScalingdielectrowettingEngineering,NanjingUniversityofPostsandopticalshutterstohigherresolution:microfluidicandopticalTelecommunications,Nanjing210023,Chinaimplications.Langmuir2014,30,5357−5362.WenxuanDing−TheMicrofluidicOpticalTechnology(14)Clement,C.E.;Thio,S.K.;Park,S.-Y.AnoptofluidictunableResearchCenter,SchoolofElectronicandOpticalFresnellensforspatialfocalcontrolbasedonelectrowetting-on-dielectric(EWOD).Sens.Actuators,B2017,240,909−915.Engineering,NanjingUniversityofPostsand(15)Liu,C.;Wang,D.;Wang,Q.-H.;Fang,J.Electrowetting-Telecommunications,Nanjing210023,China;orcid.org/actuatedmultifunctionaloptofluidiclenstoimprovethequalityof0000-0002-7944-5138computer-generatedholography.Opt.Express2019,27,12963−YayanHuang−TheMicrofluidicOpticalTechnologyResearch12975.Center,SchoolofElectronicandOpticalEngineering,(16)Luo,L.;Li,L.;Wang,J.-H.;Yuan,R.-Y.;Wang,Q.-H.LiquidNanjingUniversityofPostsandTelecommunications,prismwithdual-interfacebasedonelectrowettingeffect.Opt.Nanjing210023,ChinaCommun.2018,425,180−184.MeimeiKong−TheMicrofluidicOpticalTechnology(17)Rigas,E.;Hallam,J.M.;Charrett,T.O.H.;Ford,H.D.;ResearchCenter,SchoolofElectronicandOpticalTatam,R.P.Metre-per-secondmicrofluidicflowvelocimetrywithEngineering,NanjingUniversityofPostsanddualbeamopticalcoherencetomography.Opt.Express2019,27,23849−23863.Telecommunications,Nanjing210023,China(18)Liu,C.;Wang,D.;Wang,Q.-H.;Xing,Y.MultifunctionalTaoChen−TheMicrofluidicOpticalTechnologyResearchoptofluidiclenswithbeamsteering.Opt.Express2020,28,7734−Center,SchoolofElectronicandOpticalEngineering,7745.NanjingUniversityofPostsandTelecommunications,(19)Wang,D.;Liu,C.;Shen,C.;Xing,Y.;Wang,Q.H.HolographicNanjing210023,ChinacaptureandprojectionsystemofrealobjectbasedontunablezoomCompletecontactinformationisavailableat:lens.PhotoniX2020,1,6.(20)Yang,C.-C.;Tsai,C.-W.G.;Yeh,J.A.Dynamicbehaviorofhttps://pubs.acs.org/10.1021/acs.langmuir.0c03064liquidmicrolensesactuatedusingdielectricforce.J.Microelectromech.Syst.2011,20,1143−1149.Notes(21)Lu,Y.-S.;Tu,H.;Xu,Y.;Jiang,H.TunabledielectricliquidlensTheauthorsdeclarenocompetingfinancialinterest.onflexiblesubstrate.Appl.Phys.Lett.2013,103,261113.(22)Ashtiani,A.O.;Jiang,H.Anelectrowettingdrivenliquid■tunableopticalphaseshifter.201719thInternationalConferenceonACKNOWLEDGMENTSSolid-StateSensors,ActuatorsandMicrosystems(Transducers);IEEE,ThisworkhasbeensupportedbytheNationalNaturalScience2017;pp1955−1958.FoundationofChina(no.61775102)andtheYouthProgram(23)Ashtiani,A.O.;Jiang,H.AliquidopticalphaseshifterwithanoftheNationalNaturalScienceFoundationofChina(no.embeddedelectrowettingactuator.J.Microelectromech.Syst.2017,26,61905117).305−307.(24)Li,L.;Wang,J.-H.;Wang,Q.-H.;Wu,S.-T.Displaceableand■focus-tunableelectrowettingoptofluidiclens.Opt.Express2018,26,REFERENCES25839−25848.(1)Strack,R.Improvingopticalcoherencetomography.Nat.(25)Wang,Q.;Xiao,L.;Liu,C.OptofluidicvariableopticalpathMethods2019,16,957.modulator.Sci.Rep.2019,9,7082.(2)Bui,B.V.;Downie,L.E.;Lindsay,R.G.Opticalcoherence(26)Lautner,G.;Stringer,B.;Brisbois,E.J.;Meyerhoff,M.E.;tomography:seeingtheunseen.Clin.Exp.Optom.2019,102,193−Schwendeman,S.P.Controlledlight-inducedgasphasenitricoxide194.releasefromS-nitrosothiol-dopedsiliconerubberfilms.NitricOxide(3)Irsch,K.Opticalcoherencetomography−basicoptical2019,86,31−37.principles.ActaOphthalmol.2019,97.DOI:10.1111/j.1755-(27)Edwards,A.M.J.;Brown,C.V.;Newton,M.I.;McHale,G.3768.2019.5014Dielectrowetting:Thepast,presentandfuture.Curr.Opin.Colloid(4)Ayun,M.B.;Liokumovitch,E.;Gotliv,D.;Sternklar,S.Phase-InterfaceSci.2018,36,28−36.shift-amplifiedinterferometry.Opt.Lett.2018,43,2402−2405.(5)Kantun-Montiel,R.;Meneses-Fabian,C.;Lemus-Alonso,G.-P.Phaseshifterwithadjustableresolutionforphase-shiftinginterferom-etry.J.Optic.2018,20,105607.(6)Li,M.;Ling,J.;He,Y.Lithiumniobatephotonic-crystalelectro-opticmodulator.Nat.Commun.2020,11,4123.773https://dx.doi.org/10.1021/acs.langmuir.0c03064Langmuir2021,37,769−773

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭