欢迎来到天天文库
浏览记录
ID:7290596
大小:83.58 KB
页数:8页
时间:2018-02-10
《linear mappings between normed linear spaces》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、CHAPTER15LinearMappingsBetweenNormedLinearSpacesLetXandYbeapairoffinite-dimensionalnonmedlinearspacesoverthereals;weshalldenotethenorminbothspacesbyII,althoughtheyhavenothingtodowitheachother.Thefirstlemmashowsthateverylinearmapofonenonmedlinearspaceintoanotherisbounded.Lemma1.ForanylinearmapT:X-+Y,
2、thereisaconstantcsuchthatforallxinX,ITxiaixj;(2)thenTx=>ajTxj.BypropertiesofthenorminY,ITxllaillTxllFromthiswededucethatITxi3、PPLICATIONSwhereIxlx=maxlail,k=ITxil.WehavenotedinChapter14thatIIxisanorm.SincewehaveshowninChapter14,Theorem2,thatallnormsareequivalent,IxI,4、lideanspaceintoanother.Analogously,wehavethefollowingdefinition.Definition.ThenormofthelinearmapT:X-->Y,denotedasITI,isITxIITI=sup.(4)a-#0IxIRemark1.Itfollowsfrom(1)thatITIisfinite.Remark2.ItiseasytoseethatITIisthesmallestvaluewecanchooseforcininequality(1).Becauseofthehomogeneityofnorms,definition(5、4)canbephrasedasfollows:(4)'ITI=supITxI.jxl=1Theorem2.ITIasdefinedin(4)and(4)'isanorminthelinearspaceofalllinearmappingsofXintoY.Proof.SupposeTisnonzero;thatmeansthatforsomevectorxoy60,Tx000.Thenby(4),IT*ITI>IxolsincethenormsinXandYarepositive,thepositivityofITIfollows.LINEARMAPPINGSBETWEENNORMEDLIN6、EARSPACES231Toprovesubadditivitywenote,using(4)',thatwhenSandTaretwomappingsofX-rY,thenIT+SI=supI(T+S)xI7、eityisobvious;thiscompletestheproofofTheorem2.GivenanymappingTfromonelinearspaceXintoanotherY,weexplainedinChapter3thatthereisanothermap,calledthetransposeofTanddenotedasT,mappingY,thedualofY,intoX',t
3、PPLICATIONSwhereIxlx=maxlail,k=ITxil.WehavenotedinChapter14thatIIxisanorm.SincewehaveshowninChapter14,Theorem2,thatallnormsareequivalent,IxI,4、lideanspaceintoanother.Analogously,wehavethefollowingdefinition.Definition.ThenormofthelinearmapT:X-->Y,denotedasITI,isITxIITI=sup.(4)a-#0IxIRemark1.Itfollowsfrom(1)thatITIisfinite.Remark2.ItiseasytoseethatITIisthesmallestvaluewecanchooseforcininequality(1).Becauseofthehomogeneityofnorms,definition(5、4)canbephrasedasfollows:(4)'ITI=supITxI.jxl=1Theorem2.ITIasdefinedin(4)and(4)'isanorminthelinearspaceofalllinearmappingsofXintoY.Proof.SupposeTisnonzero;thatmeansthatforsomevectorxoy60,Tx000.Thenby(4),IT*ITI>IxolsincethenormsinXandYarepositive,thepositivityofITIfollows.LINEARMAPPINGSBETWEENNORMEDLIN6、EARSPACES231Toprovesubadditivitywenote,using(4)',thatwhenSandTaretwomappingsofX-rY,thenIT+SI=supI(T+S)xI7、eityisobvious;thiscompletestheproofofTheorem2.GivenanymappingTfromonelinearspaceXintoanotherY,weexplainedinChapter3thatthereisanothermap,calledthetransposeofTanddenotedasT,mappingY,thedualofY,intoX',t
4、lideanspaceintoanother.Analogously,wehavethefollowingdefinition.Definition.ThenormofthelinearmapT:X-->Y,denotedasITI,isITxIITI=sup.(4)a-#0IxIRemark1.Itfollowsfrom(1)thatITIisfinite.Remark2.ItiseasytoseethatITIisthesmallestvaluewecanchooseforcininequality(1).Becauseofthehomogeneityofnorms,definition(
5、4)canbephrasedasfollows:(4)'ITI=supITxI.jxl=1Theorem2.ITIasdefinedin(4)and(4)'isanorminthelinearspaceofalllinearmappingsofXintoY.Proof.SupposeTisnonzero;thatmeansthatforsomevectorxoy60,Tx000.Thenby(4),IT*ITI>IxolsincethenormsinXandYarepositive,thepositivityofITIfollows.LINEARMAPPINGSBETWEENNORMEDLIN
6、EARSPACES231Toprovesubadditivitywenote,using(4)',thatwhenSandTaretwomappingsofX-rY,thenIT+SI=supI(T+S)xI7、eityisobvious;thiscompletestheproofofTheorem2.GivenanymappingTfromonelinearspaceXintoanotherY,weexplainedinChapter3thatthereisanothermap,calledthetransposeofTanddenotedasT,mappingY,thedualofY,intoX',t
7、eityisobvious;thiscompletestheproofofTheorem2.GivenanymappingTfromonelinearspaceXintoanotherY,weexplainedinChapter3thatthereisanothermap,calledthetransposeofTanddenotedasT,mappingY,thedualofY,intoX',t
此文档下载收益归作者所有