linear mappings between normed linear spaces

linear mappings between normed linear spaces

ID:7290596

大小:83.58 KB

页数:8页

时间:2018-02-10

linear mappings between normed linear spaces_第1页
linear mappings between normed linear spaces_第2页
linear mappings between normed linear spaces_第3页
linear mappings between normed linear spaces_第4页
linear mappings between normed linear spaces_第5页
资源描述:

《linear mappings between normed linear spaces》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、CHAPTER15LinearMappingsBetweenNormedLinearSpacesLetXandYbeapairoffinite-dimensionalnonmedlinearspacesoverthereals;weshalldenotethenorminbothspacesbyII,althoughtheyhavenothingtodowitheachother.Thefirstlemmashowsthateverylinearmapofonenonmedlinearspaceintoanotherisbounded.Lemma1.ForanylinearmapT:X-+Y,

2、thereisaconstantcsuchthatforallxinX,ITxiaixj;(2)thenTx=>ajTxj.BypropertiesofthenorminY,ITxllaillTxllFromthiswededucethatITxi

3、PPLICATIONSwhereIxlx=maxlail,k=ITxil.WehavenotedinChapter14thatIIxisanorm.SincewehaveshowninChapter14,Theorem2,thatallnormsareequivalent,IxI,

4、lideanspaceintoanother.Analogously,wehavethefollowingdefinition.Definition.ThenormofthelinearmapT:X-->Y,denotedasITI,isITxIITI=sup.(4)a-#0IxIRemark1.Itfollowsfrom(1)thatITIisfinite.Remark2.ItiseasytoseethatITIisthesmallestvaluewecanchooseforcininequality(1).Becauseofthehomogeneityofnorms,definition(

5、4)canbephrasedasfollows:(4)'ITI=supITxI.jxl=1Theorem2.ITIasdefinedin(4)and(4)'isanorminthelinearspaceofalllinearmappingsofXintoY.Proof.SupposeTisnonzero;thatmeansthatforsomevectorxoy60,Tx000.Thenby(4),IT*ITI>IxolsincethenormsinXandYarepositive,thepositivityofITIfollows.LINEARMAPPINGSBETWEENNORMEDLIN

6、EARSPACES231Toprovesubadditivitywenote,using(4)',thatwhenSandTaretwomappingsofX-rY,thenIT+SI=supI(T+S)xI

7、eityisobvious;thiscompletestheproofofTheorem2.GivenanymappingTfromonelinearspaceXintoanotherY,weexplainedinChapter3thatthereisanothermap,calledthetransposeofTanddenotedasT,mappingY,thedualofY,intoX',t

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。