历年中考数学难题及答案

ID:6647465

大小:343.50 KB

页数:13页

时间:2018-01-21

历年中考数学难题及答案_第1页
历年中考数学难题及答案_第2页
历年中考数学难题及答案_第3页
历年中考数学难题及答案_第4页
历年中考数学难题及答案_第5页
资源描述:

《历年中考数学难题及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、应用题20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而

2、其每千克成本(元)与销售月份(月)满足的函数关系如图所示.(1)试确定的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?2524y2(元)x(月)123456789101112第22题图O21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?20.(9分

3、)某项工程,甲工程队单独完成任务需要40天.若乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务.请问:(1)(5分)乙队单独做需要多少天才能完成任务?(2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天.若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?3、(2009年重庆市江津区)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售

4、。(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?5、(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?几何

5、题20.(本题满分8分)如图,在□ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.第20题图23.(本题满分10分)如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA·PB=PC·PD;(2)设BC的中点为F,连结FP并延长交AD于E,求证:EF⊥AD:(3)若AB=8,CD=6,求OP的长.第23题图18.(8分)如图8,大楼AD的高为10m,远处有一塔BC.某人在楼底A处测得塔顶B点处的仰角为60°,爬到楼顶60°30°图8EDCDB

6、AD点处测得塔顶B点的仰角为30°.求塔BC的高度.解:22.已知:如图,在⊙O中,弦AB与CD相交于点M.(1)若AD=CB,求证:△ADM≌△CBM.(2)若AB=CD,△ADM与△CBM是否全等?为什么?21.(本题10分)如图,已知是的直径,过点作弦的平行线,交过点的切线于点,连结.(1)求证:;(2)若,,求的长.21.(本小题满分8分)已知:如图,在中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.(1)求证:;ADGCBFE第21题图(2)若,当AB与BC满足什么数量关系时,四边形是菱形?证明你的结论.二次函数结合图像题(本题满分12分)一开

7、口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.第25题图21.(9分)如图10,已知:△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴正半轴相交于点E,点B的坐标是(-1,0),P点是AC上的动点(P点与yxABODCEP图10A、C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《历年中考数学难题及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、应用题20.(本小题满分8分)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)22.(本小题满分10分)某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而

2、其每千克成本(元)与销售月份(月)满足的函数关系如图所示.(1)试确定的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?2524y2(元)x(月)123456789101112第22题图O21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?20.(9分

3、)某项工程,甲工程队单独完成任务需要40天.若乙队先做30天后,甲、乙两队一起合做20天就恰好完成任务.请问:(1)(5分)乙队单独做需要多少天才能完成任务?(2)(4分)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天.若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?3、(2009年重庆市江津区)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售

4、。(1)请建立销售价格y(元)与周次x之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为,1≤x≤11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?5、(2009年滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?几何

5、题20.(本题满分8分)如图,在□ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.第20题图23.(本题满分10分)如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA·PB=PC·PD;(2)设BC的中点为F,连结FP并延长交AD于E,求证:EF⊥AD:(3)若AB=8,CD=6,求OP的长.第23题图18.(8分)如图8,大楼AD的高为10m,远处有一塔BC.某人在楼底A处测得塔顶B点处的仰角为60°,爬到楼顶60°30°图8EDCDB

6、AD点处测得塔顶B点的仰角为30°.求塔BC的高度.解:22.已知:如图,在⊙O中,弦AB与CD相交于点M.(1)若AD=CB,求证:△ADM≌△CBM.(2)若AB=CD,△ADM与△CBM是否全等?为什么?21.(本题10分)如图,已知是的直径,过点作弦的平行线,交过点的切线于点,连结.(1)求证:;(2)若,,求的长.21.(本小题满分8分)已知:如图,在中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.(1)求证:;ADGCBFE第21题图(2)若,当AB与BC满足什么数量关系时,四边形是菱形?证明你的结论.二次函数结合图像题(本题满分12分)一开

7、口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.第25题图21.(9分)如图10,已知:△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴正半轴相交于点E,点B的坐标是(-1,0),P点是AC上的动点(P点与yxABODCEP图10A、C

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭