欢迎来到天天文库
浏览记录
ID:6641603
大小:85.94 KB
页数:10页
时间:2018-01-21
《毕业设计(论文)文献综述-无线电能传输装置的硬件设计》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、本科毕业设计论文文献综述题目:电能无线传输装置的硬件设计作者姓名指导教师专业班级学院信息工程学院提交日期2016年3月7日电能无线传输装置的硬件设计姓名:专业班级:摘要:无线电能传输技术是通过电磁感应、电磁共振、电磁辐射等多种形式实现非接触式的新型电能传输,能帮助使我们摆脱传统的电能传输方式的各种缺点。文章阐述了无线电能传输技术的研究背景,介绍了该传输方式的各种优点,以及在国内外的研究发展历程。之后叙述了现有理论框架下的三种无线电能传输技术,并比较了四种技术的特点。文章的最后,阐述了无线电能传输技术的应用前景和领域。关键词:无线电能传输;电磁感应;电磁共振;电磁辐射;传输效
2、率1研究背景及意义人类社会自第二次工业革命以来,便进入了电气化时代。大至遍布世界各地的高压线、电网,小至各种各样的家用电气设备,传统的电能传输主要通过金属导线点对点,属于直接接触传输。这种传输方式使用电缆线作为媒介,在电能传输的过程中将不可避免的产生一些问题。例如尖端放电、线路老化等因素导致的电火花,不仅会使线路损耗增大,还会大大降低供电的可靠性和安全性[1],且会缩短设备的寿命。在油田、钻采矿井等场合,用传统的输电方式容易由于摩擦而产生微小电火花,严重时甚至引起爆炸,造成重大的事故。在水下,导线直接接触供电还有电击的危险[2-4]。这一系列的问题都在呼唤着一种摆脱金属电缆
3、的电能传输方式,即无线电能传输。无线电能传输(WPT)是一种有效的新型电能传输方法,通过无线电能传输,不需要使用电缆或其他实物就能进行电能的传输,电能可以通过短距离耦合,中等范围的谐振感应和电磁波感应传输,在很难使用传统电缆的地方也可以实现电能传输[5]。实现无线电能传输,将使人类在电能方面的应用更加宽广和灵活。电能的无线传输技术将开辟人类能源的另一个新时代,给大众带来非同凡响的意义和影响。下面将阐述无线电能传输的各种优点:方便性:设想一下,只需一个充电器垫,就可以同时为智能手机、MP3播放器等多个数码设备充电,不知会给我们的生活带来多少便利。有了无线供电技术,设备的充电供
4、电将不受插座和线缆束缚,从而更方便。不难想象,在不久的将来,这样的无线充电设施就会被普及,遍布各个家庭及公共场所。人们可以利用这些无线供/充电设备随时随地供/充电。就像今天无论在何地都可以自由自在的上网冲浪一样。通用性:现在的电子产品充电供电由于存在不同品牌、不同接口充电器不兼容的问题,需要携带各种杂乱的电源适配器和数据线。无线供电技术一旦普及,这个问题就能得到很好的解决。消费者不只需携带一个小小的充电器垫,甚至酒店、餐馆等地已为客人准备好充电器垫,将可一举解决令人头疼的充电器不兼容问题.美观性:如今,用于工作和娱乐的电子设备越来越多,其增长速度令人咋舌。但随处可见的乱糟糟
5、的一团团电缆十分影响美观性和人的好感。而无线充电技术的出现将可以显著改善这个问题。在解决了效率转化、电磁辐射安全的情况下,若所有家电都进入无线供电时代,将能有效的解决家庭布线、家电固定化、景观破坏、居室墙面等问题,美化人的生活环境。再者,没有了电线接口和充电接口,便携式电子设备体积将进一步缩小,从而增加设备的美观。应急性:在沙漠、海岛、北冰洋和偏僻的山村等缺乏或无法连接输电线的地方,无线供电也能发挥巨大作用。另外,还可解决传统供电中的一些特殊问题,例如,美国的研究者曾设想在高速公路的沿线设立各种微波发射台,为沿途的汽车提供不断的能源供应,加拿大等国也开始尝试用电磁辐射式无线
6、供电的无人机作为电视转播台。因此,在将来,无线供电还可成为一种特殊、紧急的供电方法。安全性:无线供电可避免经常性的插拔插头引起的插头损坏、接触不良等安全问题;电子设备的外壳上可省去金属接点和电气开口,可消除接触可能产生的电火花,从而避免电火花可能引发的爆炸;同时电子产品的防水性及密封性将进一步增强。着在医疗仪器方面也将带来益处,因为电池供电的医疗设备的防水性能将得到提高,且更易于消毒.2无线电能传输发展历程19世纪30年代,迈克尔·法拉第提出电磁感应定律,即穿过闭合电路的磁通量发生变化,闭合电路中会有电流产生。19世纪90年代,被称为无线电能传输之父的尼古拉·特斯拉第一次提
7、出无线电能传输的构想,并于1899年演示了无导线的高频电流电动机,但出于效率与安全的考虑,这一技术就此搁置[6]。20世纪20年代,日本的H.Yagi和S.Uda发明了八本·宇田天线,可用于无线电能传输的定向。20世纪60年代,雷声公司(Raythheon)的布朗(W.C.Browm)设计了一种半波电偶极子半导体二极管整流天线,此天线效率高且结构简单,由此完成了32.45GHz微电波驱动直升机的实验[7-8]。后来,他又进行了室内微波能量传输实验,实现了90%的微波-直流能量转换效率。自Brown的实验成功以后,无
此文档下载收益归作者所有