初一数学追及问题和相遇问题列方程的技巧

初一数学追及问题和相遇问题列方程的技巧

ID:6589912

大小:103.50 KB

页数:10页

时间:2018-01-19

初一数学追及问题和相遇问题列方程的技巧_第1页
初一数学追及问题和相遇问题列方程的技巧_第2页
初一数学追及问题和相遇问题列方程的技巧_第3页
初一数学追及问题和相遇问题列方程的技巧_第4页
初一数学追及问题和相遇问题列方程的技巧_第5页
资源描述:

《初一数学追及问题和相遇问题列方程的技巧》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、初一数学追及问题和相遇问题列方程的技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇

2、问题。相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证

3、了迅速解题。相离问题两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。追及问题两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若

4、干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。基本公式有:追及(或领先)的路程÷速度差=追及时间速度差×追及时间=追及(或领先)的路程追及(或领先)的路程÷追及时间=速度差要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、

5、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。常用公式:行程问题基本恒等关系式:速度×时间=路程,即S=vt.行程问题基本比例关系式:路程一定的情况下,速度和时间成反比;时间一定的情况下,路程和速度成正比;速度一定的情况下,路程和时间成正比。相遇追及问题中符号法则:相向运动,速度取和;同向运动,速度取差。流水行船问题中符号法则:促进运动,速度取和;阻碍运动,速度取差。行程问题常用比例关系式:路程比=速度比×时间比,即S1/S2=v1/v2×t1/t2电梯运行规律:能看到的电梯级数=(人速+电梯速度)×顺电梯运动所需时间能看到的电梯级数=(人速—电梯速度)×逆

6、电梯运动所需时间2v1v2往返运动问题核心公式:往返平均速度=-------(其中v1和v2分别表示往返的速度)v1+v23S1+S2两次相遇问题核心公式:单岸型S=-------;两岸型S=3S1-S2(S表示两岸的距离)2相向而行:相遇时间=距离÷速度之和相背而行:相背距离=速度之和×时间注意:同向而行追及时速度慢的在前,快的在后。在环形跑道上,速度快的在前,慢的在后。环形运动的追击问题和相遇问题:若同向同起点运动,第一次相遇时,速度快的比速度慢的多跑一圈;若相向同起点运动,第一次相遇时,两者路程和为一圈的长度。解决行程问题,常以速度为中心,路程和时间为两个基本点,善于抓

7、住不变量列方程。对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。分析复杂的行程问题时,最好画线段图帮助思考。理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的。(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的At+bt=st=s/a+bS甲=a*t=a*s/a+bS乙=b*t=b*s/a+b封闭路线中的行程问题解决封闭路线中的行程问题,仍要抓住“路程=速度×时间”这个基本关系式,搞清

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。