欢迎来到天天文库
浏览记录
ID:62306279
大小:490.95 KB
页数:27页
时间:2021-04-26
《山东青岛数学解析-2014初中毕业学业考试试卷.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、优选某某省某某市2014年中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014•某某)﹣7的绝对值是( )A.﹣7B.7C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:
2、﹣7
3、=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(2014•某某)下列四个图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.考点:中心对
4、称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴27/27优选此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此
5、题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2014•某某)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为( )A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤
6、a
7、<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:
8、解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤
9、a
10、<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•某某)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( )A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看中央电视台早间新闻的约有1
11、5×=1.5万,27/27优选故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(2014•某某)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是( )A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,
12、∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)(2014•某某)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为( )A.﹣=2B.﹣=2C.﹣=2D.﹣=2考点:由实际问题抽象出分式方程.27/27优选分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列
13、出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(2014•某某)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为( )A.4B.3C.4.5D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.
14、解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角
此文档下载收益归作者所有