探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探

探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探

ID:6122772

大小:235.02 KB

页数:11页

时间:2018-01-03

探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探_第1页
探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探_第2页
探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探_第3页
探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探_第4页
探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探_第5页
资源描述:

《探索推荐引擎内部的秘密,第 1 部分 推荐引擎初探》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、探索推荐引擎内部的秘密,第1部分:推荐引擎初探简介: 随着Web技术的发展,使得内容的创建和分享变得越来越容易。每天都有大量的图片、博客、视频发布到网上。信息的极度爆炸使得人们找到他们需要的信息将变得越来越难。传统的搜索技术是一个相对简单的帮助人们找到信息的工具,也广泛的被人们所使用,但搜索引擎并不能完全满足用户对信息发现的需求,原因一是用户很难用恰当的关键词描述自己的需求,二是基于关键词的信息检索在很多情况下是不够的。而推荐引擎的出现,使用户获取信息的方式从简单的目标明确的数据的搜索转换到更高级更符合人们使用习惯的上下文信息更丰富的信息

2、发现。“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结合ApacheMahout介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法。本文作为这个系列的第一篇文章,将深入介绍推荐引擎的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐引擎。信息发现如今已经进入了一个数据爆炸的时代,随着Web2.0的发展,Web已经变成数据分享的平台,那么

3、,如何让人们在海量的数据中想要找到他们需要的信息将变得越来越难。在这样的情形下,搜索引擎(Google,Bing,百度等等)成为大家快速找到目标信息的最好途径。在用户对自己需求相对明确的时候,用搜索引擎很方便的通过关键字搜索很快的找到自己需要的信息。但搜索引擎并不能完全满足用户对信息发现的需求,那是因为在很多情况下,用户其实并不明确自己的需要,或者他们的需求很难用简单的关键字来表述。又或者他们需要更加符合他们个人口味和喜好的结果,因此出现了推荐系统,与搜索引擎对应,大家也习惯称它为推荐引擎。随着推荐引擎的出现,用户获取信息的方式从简单的目

4、标明确的数据的搜索转换到更高级更符合人们使用习惯的信息发现。如今,随着推荐技术的不断发展,推荐引擎已经在电子商务(E-commerce,例如Amazon,当当网)和一些基于social的社会化站点(包括音乐,电影和图书分享,例如豆瓣,Mtime等)都取得很大的成功。这也进一步的说明了,Web2.0环境下,在面对海量的数据,用户需要这种更加智能的,更加了解他们需求,口味和喜好的信息发现机制。回页首推荐引擎前面介绍了推荐引擎对于现在的Web2.0站点的重要意义,这一章我们将讲讲推荐引擎到底是怎么工作的。推荐引擎利用特殊的信息过滤技术,将不同的

5、物品或内容推荐给可能对它们感兴趣的用户。图1.推荐引擎工作原理图 图1给出了推荐引擎的工作原理图,这里先将推荐引擎看作黑盒,它接受的输入是推荐的数据源,一般情况下,推荐引擎所需要的数据源包括:·要推荐物品或内容的元数据,例如关键字,基因描述等;·系统用户的基本信息,例如性别,年龄等·用户对物品或者信息的偏好,根据应用本身的不同,可能包括用户对物品的评分,用户查看物品的记录,用户的购买记录等。其实这些用户的偏好信息可以分为两类:·显式的用户反馈:这类是用户在网站上自然浏览或者使用网站以外,显式的提供反馈信息,例如用户对物品的评分,或者对物品

6、的评论。·隐式的用户反馈:这类是用户在使用网站是产生的数据,隐式的反应了用户对物品的喜好,例如用户购买了某物品,用户查看了某物品的信息等等。显式的用户反馈能准确的反应用户对物品的真实喜好,但需要用户付出额外的代价,而隐式的用户行为,通过一些分析和处理,也能反映用户的喜好,只是数据不是很精确,有些行为的分析存在较大的噪音。但只要选择正确的行为特征,隐式的用户反馈也能得到很好的效果,只是行为特征的选择可能在不同的应用中有很大的不同,例如在电子商务的网站上,购买行为其实就是一个能很好表现用户喜好的隐式反馈。推荐引擎根据不同的推荐机制可能用到数据

7、源中的一部分,然后根据这些数据,分析出一定的规则或者直接对用户对其他物品的喜好进行预测计算。这样推荐引擎可以在用户进入的时候给他推荐他可能感兴趣的物品。回页首推荐引擎的分类推荐引擎的分类可以根据很多指标,下面我们一一介绍一下:1.推荐引擎是不是为不同的用户推荐不同的数据根据这个指标,推荐引擎可以分为基于大众行为的推荐引擎和个性化推荐引擎o根据大众行为的推荐引擎,对每个用户都给出同样的推荐,这些推荐可以是静态的由系统管理员人工设定的,或者基于系统所有用户的反馈统计计算出的当下比较流行的物品。o个性化推荐引擎,对不同的用户,根据他们的口味和喜

8、好给出更加精确的推荐,这时,系统需要了解需推荐内容和用户的特质,或者基于社会化网络,通过找到与当前用户相同喜好的用户,实现推荐。这是一个最基本的推荐引擎分类,其实大部分人们讨论的推荐引擎都是将

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。