资源描述:
《专题2:带电粒子在有界磁场中的运动复习过程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题2:带电粒子在有界磁场中的运动7.如图所示,在半径为R的圆筒内有匀强磁场,质量为m、带电量为q的正离子在小孔S处,以速度v0向着圆心射入,施加的磁感应强度为多大,此粒子才能在最短的时间内从原孔射出?(设相碰时电量和动能均无损失)O’rrOB·RS.解:粒子经过n=2,3,4……次与圆筒碰撞从原孔射出,其运动轨迹具有对称性.当发生最少碰撞次数n=2时OB·RS.O’rr当发生碰撞次数n=3时可见发生碰撞次数越多,所用时间越长,故当n=2时所用时间最短O’rrOB·RS.思考:求碰撞次数n=2时粒子在磁场中运动的时间.8.一带电质点,质量为m,电量为q,重力忽略不计,以平行于
2、ox轴的速度v从y轴上的a点射入.如图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于ox的速度射出,可在适当的地方加一垂直于xy平面、磁感应强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,求这圆形磁场区域的最小半径.abxyOO’4.如图,在一水平放置的平板MN上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图是正确的?MNBOA2RR2RMNO2RR2R
3、MNO2R2R2RMNOR2R2RMNOD.A.B.C.解:带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,由R=mv/qB,各个粒子在磁场中运动的半径均相同,在磁场中运动的轨迹圆圆心是在以O为圆心、以R=mv/qB为半径的1/2圆弧上,如图虚线示:各粒子的运动轨迹如图实线示:带电粒子可能经过的区域阴影部分如图斜线示2RR2RMNO5.水平线MN的下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O的正下方与O点相距为L的质子源S,可在纸面内1800范围内发射质量为m、电量为e、速度为v=BeL/m的质子,质子的重力不计,试说明在M
4、N线上多大范围内有质子穿出。OMNSBO点左右距离O点L的范围内有质子穿出.OMNSB6.如图,电子源S能在图示纸面360°范围内发射速率相同的电子(质量为m,电量为e),M、N是足够大的竖直挡板,与S的水平距离OS=L,挡板左侧是垂直纸面向里,磁感应强度为B的匀强磁场。(1)要使发射的电子能到达挡板,电子速度至少为多大?(2)若S发射的电子速率为eBL/m时,挡板被电子击中的范围有多大?MOLN.S7.如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离L=16cm处,有一个点状
5、的放射源S,它向各个方向发射α粒子,α粒子的速度都是v=4.8x106m/s,已知α粒子的电荷与质量之比q/m=5.0x107C/kg现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.sabL.解:粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有因朝不同方向发射的α粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中ab上侧与ab相切,则此切点P1就是该粒子能打中的上侧最远点.sabP1再考虑ab的下侧.任何α粒子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于ab下侧的P2点,此即下侧能打到的最远点.P2NL8.如图所
6、示,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。O是MN上的一点,从O点可以向磁场区域发射电荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力和粒子间的相互作用。MNPO(1)求所考察的粒子在磁场中的轨道半径;(2)求这两个粒子从O点射入磁场的时间间隔。解:作出粒子运动轨迹如图。质点在磁场中作圆周运动,半径为:R=mv/qB从O点射入到相遇,粒子1、2的路径分别为:粒子1运动时间:t1=T/2+T(2θ/2π)
7、由几何知识:粒子2运动时间:t2=T/2-T(2θ/2π)cosθ=L/2R得:θ=arccos(L/2R)故两粒子运动时间间隔:△t=t1-t2=2Tθ/π=4mBq.arccos()LBq2mvORP、OKP周期为:T=2πm/qBQ1Q2MNθθ2OPθθθθ2RK4.如图所示,相互平行的直线M、N、P、Q间存在垂直于纸面的匀强磁场。某带负电粒子由O点垂直于磁场方向射入,已知粒子速率一定,射入时速度方向与OM间夹角的范围为0<θ<90º,不计粒子的重力,则:A.θ越大,粒子在磁场中运动的时间可能越