模拟退火算法的教程教程文件.ppt

模拟退火算法的教程教程文件.ppt

ID:58837783

大小:643.50 KB

页数:54页

时间:2020-10-01

模拟退火算法的教程教程文件.ppt_第1页
模拟退火算法的教程教程文件.ppt_第2页
模拟退火算法的教程教程文件.ppt_第3页
模拟退火算法的教程教程文件.ppt_第4页
模拟退火算法的教程教程文件.ppt_第5页
资源描述:

《模拟退火算法的教程教程文件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、模拟退火算法SimulatedAnnealingAlgorithm信息与计算科学卿铭模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却;加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到某种稳定状态,基态,内能减为最小。1模拟退火算法的思想缓慢降温(退火,annealing)时,可达到最低能量状态,较为柔韧;但如果快速降温(淬火,quenching),会导致不是最低能态的非晶形,较硬易断。大自然知道慢工出细活:缓缓降温,使得物体分子在每一温度时,能够有足够时间找到安顿位置,则逐渐地,到最后可得到最低能态,

2、系统最稳定。1模拟退火算法的思想模拟退火算法(SimulatedAnnealing,SA)最早的思想是由N.Metropolis等人于1953年提出。1983年,S.Kirkpatrick等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有

3、效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用。组合优化与物理退火的相似性比较组合优化问题金属物体解粒子状态最优解能量最低的状态设定初温熔解过程Metropolis抽样过程等温过程控制参数的下降冷却目标函数能量从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内

4、能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(CoolingSchedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。2模拟退火算法的原理在温度T,分子停留在状态r满足Boltzmann概率分布2物理退火过程的数学表示在同一个温度T,选定两个能量E10模拟退火算法基本思想:在

5、一定温度下,搜索从一个状态随机地变化到另一个状态;随着温度的不断下降直到最低温度,搜索过程以概率1停留在最优解2物理退火过程的数学表示可知:(1)在同一个温度,分子停留在能量小状态的概率大于停留在能量大状态的概率(2)温度越高,不同能量状态对应的概率相差越小;温度足够高时,各状态对应概率基本相同。(3)随着温度的下降,能量最低状态对应概率越来越大;温度趋于0时,其状态趋于1若

6、D

7、为状态空间D中状态的个数,D0是具有最低能量的状态集合:当温度很高时,每个状态概率基本相同,接近平均值1/

8、D

9、;状态空间存在超过两个不同能量时,具有最低能量状态的概率超出平均值1/

10、D

11、;当温度趋于0时,

12、分子停留在最低能量状态的概率趋于1。能量最低状态非能量最低状态2物理退火过程的数学表示Metropolis准则(1953)——以概率接受新状态固体在恒定温度下达到热平衡的过程可以用MonteCarlo方法(计算机随机模拟方法)加以模拟,虽然该方法简单,但必须大量采样才能得到比较精确的结果,计算量很大。2物理退火过程的数学表示Metropolis准则(1953)——以概率接受新状态若在温度T,当前状态i→新状态j若Ej

13、ropolis准则(1953)——以概率接受新状态p=exp[-(Ej-Ei)/kBT]在高温下,可接受与当前状态能量差较大的新状态;在低温下,只接受与当前状态能量差较小的新状态。2物理退火过程的数学表示根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。